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Motivation for
Better Shadows
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Shadows increase scene realism

Real world has shadows

More control of the game’s feel
— dramatic effects

— Spooky effects

Other art forms recognize the value of shadows

But yet most games lack realistic shadows



Common Real-time
Shadow Techniques
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S ) Projected Shadow
- planar volumes
v shadows

Hybrid
approaches

Light maps




Problems with Common
Shadow Techniques
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Mostly hacks with lots of limitations
* Projected planar shadows
— well works only on flat surfaces
« Stenciled shadow volumes
— determining the shadow volume is hard work
« Light maps
— totally unsuited for dynamic shadows

* In general, hard to get everything shadowing everything



Another Technique:
Shadow Mapping
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Image-space shadow determination
« Lance Williams published the basic idea in 1978
— By coincidence, same year Jim Blinn invented bump
mapping (a great vintage year for graphics)
« Completely image-space algorithm
— means no knowledge of scene’s geometry is required
— must deal with aliasing artifacts
« Well known software rendering technique
— Pixar's RenderMan uses the algorithm



Shadow Mapping
References
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Important SIGGRAPH papers

« Lance Williams, “Casting Curved Shadows on Curved
Surfaces,” SIGGRAPH 78

« William Reeves, David Salesin, and Robert Cook (Pixar),
“Rendering antialiased shadows with depth maps,”
SIGGRAPH 87

« Mark Seqgal, et. al. (SGI), “Fast Shadows and Lighting Effects
Using Texture Mapping,” SIGGRAPH 92



The Shadow Mapping
COnCept (1) PO OBO0ODEB Y2000
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Depth testing from the light’s point-of-view

« Two pass algorithm

* First, render depth buffer from the light’s point-of-view
— the result is a “depth map” or “shadow map”

— essentially a 2D function indicating the depth of the closest
pixels to the light

« This depth map is used in the second pass



The Shadow Mapping
COnCept (2) PO OBO0ODEB Y2000
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Shadow determination with the depth map
e Second, render scene from the eye’s point-of-view
* For each rasterized fragment
— determine fragment’'s XYZ position relative to the light

— this light position should be setup to match the frustum
used to create the depth map

— compare the depth value at light position XY in the depth
map to fragment’s light position Z



The Shadow Mapping
COnCept (3) PO OBO0ODEB Y2000
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The Shadow Map Comparison

* Two values
— A = Z value from depth map at fragment’s light XY position
— B = Z value of fragment’s XYZ light position

« If B Is greater than A, then there must be something closer to
the light than the fragment

— then the fragment is shadowed

« If A and B are approximately equal, the fragment is lit



Shadow Mapping
with a picture in 2D
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The A < B shadowed fragment case

\\‘// depth map image plane
-9
N / depthmap Z = A
light
source —

\ eye

position

v eye view image plane,
/f aka the frame buffer

fragment’s
lightZ=B



Shadow Mapping
with a picture in 2D
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The A [JB unshadowed fragment case

\\‘// depth map image plane
/ depthmap Z = A
©

\ eye
\ position

v eye view image plane,

/f aka the frame buffer

fragment’s
lightZ=B




Shadow Mapping
with a picture in 2D
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Note image precision mismatch!

The depth map

© could be at a
different resolution
from the framebuffer

This mismatch can
lead to artifacts




Visualizing the Shadow
Mapping Technique (1)
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A fairly complex scene with shadows

//.
the point
light source ol 1« f
g™ &
s LsC




Visualizing the Shadow
Mapping Technique (2)
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Compare with and without shadows
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with shadows without shadows



Visualizing the Shadow
Mapping Technique (3)
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The scene from the light’s point-of-view

a s
S-£ P
.. . | L
"
.. - .. FYI: from the
« %
» eye’s point-of-view

again




Visualizing the Shadow
Mapping Techniqgue (4)
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The depth buffer from the light’s point-of-view

FYI: from the
light’s point-of-view
again




Visualizing the Shadow
Mapping Technique (5)
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Projecting the depth map onto the eye’s view

FYI: depth map for
light’s point-of-view
again




Visualizing the Shadow
Mapping Technique (6)
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Projecting light’s planar distance onto eye’s view




Visua“Zing the Shadow SAMEDevelopers
Mapping Technique (6)
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Comparing light distance to light depth map

Green is where
the light planar
distance and
the light depth
map are
approximately
equal

Non-green is
where shadows
should be




Visualizing the Shadow
Mapping Technique (7)
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Scene with shadows

Notice how | Notice how
specular of 7 ¢ curved
highlights _ g o surfaces cast
- fr \ had
never appear in shadows on
shadows PN L each other




Construct
Light View Depth Map
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Realizing the theory In practice
« Constructing the depth map
— use existing hardware depth buffer
— read back the depth buffer contents
« Depth map can copied to a 2D texture

— unfortunately, depth values tend to require more precision
than 8-bit typical for textures (more on this later)



Render Scene and
Access the Depth Texture
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Realizing the theory In practice

« Fragment’s light position can be generated using eye-linear
texture coordinate generation

— specifically OpenGL’s GL_EYE LINEAR texgen

— generate homogenous (s, t, r, ) texture coordinates as
light-space (X, Yy, z, w)

— T&L engines such as GeForce accelerate texgen!

— relies on projective texturing




What Is
Projective Texturing?
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An intuition for projective texturing

* The slide projector analogy

Source: Wolfgang [99]



About
Projective Texturing (1)
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First, what is perspective-correct texturing?
* Normal 2D texture mapping uses (s, t) coordinates
« 2D perspective-correct texture mapping
— means (s, t) should be interpolated linearly in eye-space
— SO compute per-vertex s/w, t/w, and 1/w
— linearly interpolated these three parameters over polygon
— per-fragment compute s’ = (s/w) / (1/w) and t’ = (t/w) / (1/w)

— results in per-fragment perspective correct (s, t')



About
Projective Texturing (2)
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So what Is projective texturing?
* Now consider homogeneous texture coordinates

— (s, t, 1, q) --> (s/q, r/q, t/q)

— Similar to homogeneous clip coordinates where
(X,V, z, w) = (X/w, ylw, z/w)

* |dea Is to have (s/q, r/q, t/q) be projected per-fragment
« This requires a per-fragment divider

— yikes, dividers in hardware are fairly expensive



About
Projective Texturing (3)
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Hardware designer’s view of texturing
« Perspective-correct texturing is a practical requirement
— otherwise, textures “swim”

— perspective-correct texturing already requires the
hardware expense of a per-fragment divider

* Clever idea [Segal, et.al. ‘'92]
— Interpolate g/w instead of simply 1/w

— SO projective texturing Is practically free if you already
do perspective-correct texturing!



About
Projective Texturing (4)
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Tricking hardware into doing projective textures
« By Interpolating g/w, hardware computes per-fragment

— (s/w) / (g/w) = s/q

— (t/w) / (g/w) = t/g
* Net result: projective texturing

— OpenGL specifies projective texturing

— only overhead is multiplying 1/w by g

— but this Is per-vertex



Projective Texturing
Multitexturing
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An aside about projective multi-texturing

« Multi-texturing Is easier If all texture units are required only to
be perspective-correct

— Just requires a single hyperbolic interpolator (effectively
shares a single divider among multiple texture units)

— because 1/w Is the same for all texture units
« But multi-textured projective textures is harder
— each texture unit could have a different g

— therefore a different g/w per texture unit



NAVAIBIANES
Projective Texturing Story
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Different generations differ

 TNT generation has a single shared hyperbolic interpolator
— Independently projected dual textures do not work
— not enough gates for dual-projective in TNT timeframe

« GeForce generation has distinct g/w hyperbolic interpolators
for both texture units (bigger gate budget buys correctness)

— dual projective textures works

 Not sure what other vendors do



Back to the Shadow
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Assign light-space texture coordinates via texgen

« Transform eye-space (X, y, z, w) coordinates to the light’'s
view frustum (match how the light’s depth map is generated)

* Further transform these coordinates to map directly into the
light view’s depth map

* EXpressible as a projective transform

— load this transform into the 4 eye linear plane equations
for S, T, and Q coordinates

e (s/q, t/g) will map to light’s depth map texture



OpenGL’s Standard

Vertex Coordinate Transform
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From object coordinates to window coordinates
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object , | modelview €¥€ | projection clip
coordinates matrix coordinates matrix coordinates
(X,Y,2Z,W) (X,VY,2Z,W) (X,Y,2Z,W)
divide normalized viewport & window
b > | depth NP LT
1y i device epth range | coordinates

coordinates on\./va.rt.j to
(X, Y, 2) primitive

assembly




Eye Linear Texture
Coordinate Generation
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Generating texture coordinates from eye-space

eye-linear
—» | plane — > (s,t,r,Q)
equations
object , | modelview eye | , | projection clip
coordinates| Matrix  |coordinates matrix coordinates

Y

divide normalized |vjewport & window
> > (X,Y,2)
by w device [depthrange| qordinates

coordinates




Setting Up
Eye Linear Texgen
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With OpenGL

GLfloat Splane[4], Tplane[4], Rplane[4], Qplane[4];
glTexGenfv(GL_S, GL_EYE_ PLANE, Splane);
glTexGenfv(GL_T, GL_EYE_PLANE, Tplane);
glTexGenfv(GL_R, GL_EYE PLANE, Rplane);
glTexGenfv(GL_Q, GL_EYE_PLANE, Qplane);
glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);
glEnable(GL_TEXTURE_GEN_R);
glEnable(GL_TEXTURE_GEN_Q);

Each plane equation is transformed by current inverse
modelview matrix (a very handy thing for us)



Eye Linear
Texgen Transform
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Plane equations form a projective transform

S Splane[0] Splane[l] Splane[2] Splane[3] Xq
t _ Tplane[0] Tplane[l] Tplane[2] Tplane[3] Yo
r Rplane[0] Rplane[l] Rplane[2] Rplane[3] L
| g J Qplane[0] Qplane[l] Oplane[2] Qplane[3] W

The 4 eye linear plane equations form a 4x4 matrix
(No need for the texture matrix!)



Shadow Map Eye Linear BAMED
GAMEDevelopers
Texgen Transform
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Xe Eye Xo glTexGen automatically applies this
y : : y when modelview matrix contains just
= = 2 Modeling 0 the eye view transform
Z, (look at) matrix Z,
matrix
We W, /
T - - - = / N
1/2 1/2
S Light Light Inverse Xe
O 12 12 frustum view 2= Ve
r _ (projection) (look at) iS4 7
1/2 1/2 matrix matrix (look at) ©
q matrix W
I L 14 L J L J L J L _
\ /

Supply this combined transform to glTexGen



Shadow Map
Operation
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Automatic depth map lookups
« After the eye linear texgen with the proper transform loaded

— (s/q, t/q) Is the fragment’s corresponding location within
the light's depth texture

— 1/q Is the Z planar distance of the fragment relative to the
light’s frustum, scaled and biased to [0,1] range

« Next compare texture value at (s/q, t/q) to value r/q

— If texture[s/q, t/q] Ur/g then not shadowed

— If texture[s/q, t/q] <r/q then shadowed



Dedicated Hardware
Shadow Mapping Support
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SGIl RealityEngine and InfiniteReality Hardware
« Performs the shadow test as a texture filtering operation
— looks up texel at (s/q, t/q) in a 2D texture
— compares lookup value to r/qg
— If texel Is greater than or equal to r/q, then generate 1.0
— If texel Is less than r/q, then generate 0.0
« Modulate color with result

— zero If fragment is shadowed or unchanged color if not



OpenGL Extensions for
Shadow Map Hardware
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Two extensions work together
« SGIX depth_texture

— supports high-precision depth texture formats

— copy from depth buffer to texture memory supported
« SGIX shadow

— adds “shadow comparison” texture filtering mode

— compares r/qg to texel value at (s/q, t/q)



An Alternative to Dedicated
Shadow Mapping Hardware
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Consumer 3D hardware solution

* Proposed by Wolfgang Heidrich in his 1999 Ph.D. thesis

« Leverages today’s consumer multi-texture hardware
— 1st texture unit accesses 2D depth map texture
— 2nd texture unit accesses 1D Z range texture

« Extended texture environment subtracts 2nd texture from 1st
— shadowed if greater than zero, unshadowed otherwise

— use alpha test to discard shadowed fragments



Dual-texture Shadow
Mapping Approach
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Constructing the depth map texture
* Render scene from the light view (can disable color writes)

— use glPolygonOffset to bias depth values to avoid surfaces
shadowing themselves in subsequent shadow test pass

— perform bias during depth map construct instead of during
shadow testing pass so bias will be in depth buffer space

* Read back depth buffer with glReadPixels as unsigned bytes

* Load same bytes into GL_INTENSITYS8 texture via
glTexlmage2D



Dual-texture Shadow
Mapping Approach
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Depth map texture issues

 limited to 8-bit precision
— not a lot of precision of depth
— more about this issue later

* un-extended OpenGL provides no direct depth copy
— cannot copy depth buffer to a texture directly

— must glReadPixels, then glTeximage2D



Dual-texture Shadow
Mapping Approach
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Two-pass shadow determination

« 1st pass: draw everything shadowed

— render scene with light disabled -or- dimmed substantially
and specular light color of zero

— with depth testing enabled

« 2nd pass: draw unshadowed, rejecting shadowed fragments
— use glDepthFunc(GL_EQUAL) to match 1st pass pixels
— enable the light source, un-rejected pixels = unshadowed

— use dual-texture as described in subsequent slides



Dual-texture Shadow
Mapping Approach
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Dual-texture configuration
« 1st texture unit
— bind to 2D texture containing light's depth map texture
— Intensity texture format (same value in RGB and alpha)
* 2nd texture unit
— bind to 1D texture containing a linear ramp from 0 to 1

— maps S texture coordinate in [0, 1] range to intensity value
in [0, 1] range



Dual-texture Shadow
Mapping Approach
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Texgen Configuration
« 1st texture unit using 2D texture

— generate (s/q, t/q) to access depth map texture, ignore R

1/2 1/2
) Light Light Inverse Xe
t _ 1/2 1/2 frustum view eé/e Ye
— . view
rojection look at
(proj . ) ( .) (look at) Ze
matrix matrix )
q matrix We
1
N\ / N\ '\/ glTexGen

Supply this combined transform to glTexGen

automatically
applies this




Dual-texture Shadow
Mapping Approach
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Texgen Configuration

e 2nd texture unit using 1D texture

— generate Z planar distance in S, flips what R is into S

1/2 1/2
S 91 Light Light
_ 1/2 1/2 frustum view
R (projection) (look at)
q 12 1/2 matrix matrix
1
h— — S— 1 — — — — f—
AN /

Supply this combined transform to glTexGen

AN

Inverse
eye
view
(look at)
mautrix

/
-

glTexGen
automatically
applies this



Dual-texture Shadow
Mapping Approach
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Texture environment (texenv) configuration

« Compute the difference between Tex0 from Tex1
— un-extended OpenGL texenv cannot subtract

« But can use standard EXT texture_env_combine extension
— add signed operation

— compute fragment alpha as
alpha(Tex0) + (1 - alpha(Tex1)) - 0.5

— result is greater or equal to 0.5 when Tex0 >= Tex1
result is less than 0.5 when Tex0 < Tex1



Dual-texture Shadow
Mapping Approach

- Developers
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Texture environment (texenv) specifics

glActiveTextureARB(GL_TEXTUREQO ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE EXT);

glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_EXT, GL_REPLACE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCEO_RGB_EXT, GL_PRIMARY COLOR_EXT);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERANDO_RGB EXT, GL_SRC COLOR);

glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA EXT, GL _REPLACE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCEO_ALPHA EXT, GL _TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERANDO_ALPHA EXT, GL SRC ALPHA);

glActiveTextureARB(GL_TEXTURE1 ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE EXT);

glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB EXT, GL REPLACE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCEO_RGB EXT, GL _PREVIOUS EXT);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERANDO_RGB EXT, GL _SRC COLOR);

glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA EXT, GL ADD SIGNED EXT):
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCEQ ALPHA EXT, GL_PREVIOUS EXT);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERANDO_ALPHA EXT, GL SRC_ALPHA);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1 ALPHA EXT, GL TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1 ALPHA EXT, GL ONE_MINUS SRC ALPHA);




Dual-texture Shadow
Mapping Approach
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Post-texture environment result
 RGB is lit color (lighting Is enabled during second pass)
« Alpha is the biased difference of TO and T1

— unshadowed fragments have alpha >= 0.5

— shadowed fragments have an alpha of < 0.5



Dual-texture Shadow
Mapping Approach
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Next, reject shadowed fragments

« shadowed or unshadowed depends on alpha value
— less than 0.5 means shadowed

 use the alpha test to rejected shadowed fragments
— glEnable(GL_ALPHA TEST)
— glAlphaFunc(GL_GREATER, 0.5)



Dual-texture Shadow
Mapping Approach
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Careful about self-shadowing

« fragments are likely to shadow themselves

N

— surface casting shadow S

must not shadow Itself
©

— “near equality” common : \
when comparing Tex0 .- RN
and Tex1 .




Dual-texture Shadow
Mapping Approach
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Biasing values in depth map helps

 recall glPolygonOffset suggestion during the depth map
construction pass

« this bias should be done during depth map construction
— biases In the texgen transform do not work

— problem is depth map has non-linear distribution due to
projective frustum

« polygon offset scale keeps edge-on polygons from self-
shadowing



Depth Map Bias
Issues
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How much polygon offset bias depends

# ) r 4 " 4
;. .
e ot ¢
7 .
g <F
o ® f
.
. € .
] . ¢ $ ', [
Too little bias, " 4 . .
. ] "‘ ' Too little bias, shadow
everything begins to <
shadow " 4 starts too far back
']
Just right




Selecting the
Depth Map Bias
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Not that hard

« Usually the following works well
— glPolygonOffset(scale = 1.0, bias = 4.0)

e Usually better to error on the side of too much bias
— adjust to suit the shadow issues In your scene

« Depends somewhat on shadow map precision

— more precision requires less of a bias



Dual-texture Shadow
Mapping Precision
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Is 8-bit precision enough?
« yes, for some simple scenes

— when the objects are relatively distant from the light, but
still relatively close together

* no, in general
— an 8-bit depth buffer is not enough depth discrimination

— and the precision is badly distributed because of
perspective



Dual-texture Shadow
Mapping Precision
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Conserving your 8-bit de

0th map precision

-

.,
-
r\-‘:f
:‘.-
- B
-
-

Ny

Frustum confined to objects of interest

Frustum expanded out considerably
breaks down the shadows



Improving Depth Map
Precision
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Use linear depth precision [Wolfgang 99]
« During depth map construction

— generate S texture coordinate as eye planar Z distance
scaled to [O, 1] range

— lookup S in identity 1D intensity texture

— write texture result into color frame buffer

— still using standard depth testing

— read alpha (instead of depth) and load it in depth map texture

— alpha will have linear depth distribution (better!)



Improving Depth Map
Precision
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More hardware color component precision
* high-end workstations support more color precision

— SGI's InfiniteReality, RealityEngine, and Octane
workstations support 12-bit color component precision

* but no high precision color buffers in consumer 3D space

— consumer 3D designs too tied to 32-bit memory word size
of commodity RAM

— and overkill for most consumer applications anyway



Improving Depth Map
Precision
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Use multi-digit comparison

« fundamental shadow determination operation Is a
comparison

— comparisons (unlike multiplies or other operations) are
easy to extend to higher precision

 think about comparing two 2-digit numbers: 54 and 82
— 54 Is less than 82 simply based on the first digit (5 < 8)

— only when most-significant digits are equal do you need to
look at subsequent digits



More Precision Allows
Larger Lights Frustums
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Compare 8-bit to 16-bit precision for large frustum

- -
- -
e

=
SRR
A

f:}";‘ ’ 'f}“#‘ ’
l":'." ¢ l"l' | -
£/ JF ¢ £

”

8-bit: Large frustum breaks down the
shadows, not enough precision

- -
- -
e

=
SRR
A

16-bit:

Shadow looks just fine



Why Extra Precision
Helps

SAMEDevelopers

PEODOOO0O DEGEOA/2000

Where the precision Is for previous images

Most significant 8 bits of the depth map, Least significant 8 bits of the depth map,
pseudo-color inset magnifies variations here is where the information is!



GeForce/Quadro
Precision Extension
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Application of multi-digit comparison idea

* Read back depth buffer as 16-bit unsigned short values

* Load these values into GL_LUMINANCES8 ALPHAS texture
— think of depth map as two 8-bit digits

- Two comparison passes

« Uses NV_register _combiners extension
— signed math and mux’ing helps

— enough operations to test equality and greater/less than



GeForce/Quadro
Precision Extension
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Multi-digit comparison passes

 during clear, clear stencil buffer to O

« 1st pass draws unshadowed scene as before

 2nd
— al

— al

nass draws unshadowed

oha = bigDigit(Tex0) < bigDigit(Tex1)

pha test with glAlphaFunc(GL_GREATER, 0.0)

— and write 1 into stencil buffer when alpha test passes

* needs 3rd pass for when bigDigit(Tex0) = bigDigit(Tex1)



GeForce/Quadro
Precision Extension
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Third pass picks up the extra 8 bits of precision

« Use NV_register_combiners to assign alpha as follows

— If bigDigit(Tex1) > bigDigit(Tex0) then
alpha =0
else
alpha = littleDigit(TexO0) - littleDigit(Tex1)

* Use alpha test with glAlphaFunc(GL GREATER, 0.0)
+ Also reject fragment if the stencil value is 1

— meaning the 2nd pass already updated the pixel



Combining Shadow Mapping
with other Technigues
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Good In combination with techniques
« Use stencil to tag pixels as inside or outside of shadow
* use other rendering techniques in extra passes

— bump mapping

— texture decals, etc.

« Shadow mapping can be integrated into more complex multi-
pass rendering algorithms



Issues with Shadow
Mapping (1)
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Not without its problems

* Prone to aliasing artifacts
— “percentage closest” filtering helps this
— normal color filtering does not work well
* Depth bias is not completely foolproof
* Requires extra shadow map rendering pass and texture loading
« Higher resolution shadow map reduces blockiness

— but also increase texture loading expense



Issues with Shadow
Mapping (2)
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Not without its problems
* Shadows are limited to view frustums
— could use six view frustums for omni-directional light

* Objects outside or crossing the near and far clip planes are
not properly accounted for by shadowing

— move near plane in as close as possible

— but too close throws away valuable depth map precision
when using a projective frustum



Hybrid of Shadow Volumes \EDevelopers
and Shadow Mapping "
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Very clever idea [McCool 98]
* Render scene from light source with depth testing

* Read back the depth buffer

« Use computer vision techniques to reconstruct the shadow
volume geometry from the depth buffer image

« Very reasonable results for complex scenes

e Only requires stencill

— no multitexture and texture environment differencing
required
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More Examples

Smooth surfaces with object self-shadowing
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Note object self-shadowing
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More Examples

Complex objects all shadow
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More Examples

Even the floor casts shadow

Note shadow
leakage due to

/infinitely thin floor
l\ Could be fixed by
| giving floor
q thickness




Shadow Mapping
Source Code
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Find it on the NVIDIA web site

* The source code

— http://www.nvidia.com/opengl/ShadowMap

— Works on TNT, GeForce, & Quadro

— And vendors that support EXT_texture _env_combine
* NVIDIA OpenGL Extension Specifications

— documents EXT _texture env_combine and
NV _register_combiners

— http://www.nvidia.com/opengl/openglspecs
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The inspiration for these ideas

« Wolfgang Heidrich, Max-Planck Institute for Computer
Science

— original dual-texture shadow mapping idea

— read his thesis High-quality Shading and Lighting for
Hardware-accelerated Rendering

« Michael McCool, University of Waterloo

— suggested idea for multi-digit shadow comparisons



