)
||

SAMEDevelo pers

ro. .Y WNGh
L Cd Yy Wi
A\ o NI

y
i
h

OO0 ODGOA,2000

E
\

e
-,

hdJ
(S
>

GDC 2000:
Programming Session

Shadow Mapping
with Today’s OpenGL Hardware

March 10, 2000

\[EDevelopers

-3@ "nﬂ@ﬂﬂ D EOr2000

Mark J. Kilgard
Graphics Software Engineer
NVIDIA Corporation

Motivation for
Better Shadows

SAMEDevelopers

OO0 ODGOA,2000

Shadows increase scene realism

Real world has shadows

More control of the game’s feel
— dramatic effects

— Spooky effects

Other art forms recognize the value of shadows

But yet most games lack realistic shadows

Common Real-time
Shadow Techniques

AMEDevelopers

OO0 OBGOA,2000

S) Projected Shadow
- planar volumes
v shadows

Hybrid
approaches

Light maps

Problems with Common
Shadow Techniques

SAMEDevelopers

OO0 ODGOA,2000

Mostly hacks with lots of limitations
* Projected planar shadows
— well works only on flat surfaces
« Stenciled shadow volumes
— determining the shadow volume is hard work
« Light maps
— totally unsuited for dynamic shadows

* In general, hard to get everything shadowing everything

Another Technique:
Shadow Mapping

SAMEDevelopers

OO0 ODGOA,2000

Image-space shadow determination
« Lance Williams published the basic idea in 1978
— By coincidence, same year Jim Blinn invented bump
mapping (a great vintage year for graphics)
« Completely image-space algorithm
— means no knowledge of scene’s geometry is required
— must deal with aliasing artifacts
« Well known software rendering technique
— Pixar's RenderMan uses the algorithm

Shadow Mapping
References

SAMEDevelopers

OO0 ODGOA,2000

Important SIGGRAPH papers

« Lance Williams, “Casting Curved Shadows on Curved
Surfaces,” SIGGRAPH 78

« William Reeves, David Salesin, and Robert Cook (Pixar),
“Rendering antialiased shadows with depth maps,”
SIGGRAPH 87

« Mark Seqgal, et. al. (SGI), “Fast Shadows and Lighting Effects
Using Texture Mapping,” SIGGRAPH 92

The Shadow Mapping
COnCept (1) PO OBO0ODEB Y2000

SAMEDevelopers

Depth testing from the light’s point-of-view

« Two pass algorithm

* First, render depth buffer from the light’s point-of-view
— the result is a “depth map” or “shadow map”

— essentially a 2D function indicating the depth of the closest
pixels to the light

« This depth map is used in the second pass

The Shadow Mapping
COnCept (2) PO OBO0ODEB Y2000

SAMEDevelopers

Shadow determination with the depth map
e Second, render scene from the eye’s point-of-view
* For each rasterized fragment
— determine fragment’'s XYZ position relative to the light

— this light position should be setup to match the frustum
used to create the depth map

— compare the depth value at light position XY in the depth
map to fragment’s light position Z

The Shadow Mapping
COnCept (3) PO OBO0ODEB Y2000

SAMEDevelopers

The Shadow Map Comparison

* Two values
— A = Z value from depth map at fragment’s light XY position
— B = Z value of fragment’s XYZ light position

« If B Is greater than A, then there must be something closer to
the light than the fragment

— then the fragment is shadowed

« If A and B are approximately equal, the fragment is lit

Shadow Mapping
with a picture in 2D

\EDevelopers

EEIFBGBEII""IGB 2000

The A < B shadowed fragment case

\\‘// depth map image plane
-9
N / depthmap Z = A
light
source —

\ eye

position

v eye view image plane,
/f aka the frame buffer

fragment’s
lightZ=B

Shadow Mapping
with a picture in 2D

\EDevelopers

EEIFBGBEII""IGB 2000

The A [JB unshadowed fragment case

\\‘// depth map image plane
/ depthmap Z = A
©

\ eye
\ position

v eye view image plane,

/f aka the frame buffer

fragment’s
lightZ=B

Shadow Mapping
with a picture in 2D

\EDevelopers

EEIFBGBEII""IGB 2000

Note image precision mismatch!

The depth map

© could be at a
different resolution
from the framebuffer

This mismatch can
lead to artifacts

Visualizing the Shadow
Mapping Technique (1)

\EDevelopers

EEIFBGBEII""GE 2000

A fairly complex scene with shadows

//.
the point
light source ol 1« f
g™ &
s LsC

Visualizing the Shadow
Mapping Technique (2)

\EDevelopers

EEIFBGBEII""IGB 2000

Compare with and without shadows

Y fr 5 g

!f," Ll !f,";{d.
e 'V

rl;" rf; l”"

with shadows without shadows

Visualizing the Shadow
Mapping Technique (3)

\EDevelopers

EEIFBGBEII""IGB 2000

The scene from the light’s point-of-view

a s
S-£ P
.. . | L
"
.. - .. FYI: from the
« %
» eye’s point-of-view

again

Visualizing the Shadow
Mapping Techniqgue (4)

SAMEDevelopers

OO0 ODGOA,2000

The depth buffer from the light’s point-of-view

FYI: from the
light’s point-of-view
again

Visualizing the Shadow
Mapping Technique (5)

\EDevelopers

EEIFBGBEII""GE 2000

Projecting the depth map onto the eye’s view

FYI: depth map for
light’s point-of-view
again

Visualizing the Shadow
Mapping Technique (6)

\EDevelopers

EEIFBGBEII""GE 2000

Projecting light’s planar distance onto eye’s view

Visua“Zing the Shadow SAMEDevelopers
Mapping Technique (6)

EEDOOOO0ODAO,2000

Comparing light distance to light depth map

Green is where
the light planar
distance and
the light depth
map are
approximately
equal

Non-green is
where shadows
should be

Visualizing the Shadow
Mapping Technique (7)

\EDevelopers

EEIFBGBEII""IGB 2000

Scene with shadows

Notice how | Notice how
specular of 7 ¢ curved
highlights _ g o surfaces cast
- fr \ had
never appear in shadows on
shadows PN L each other

Construct
Light View Depth Map

SAMEDevelopers

Realizing the theory In practice
« Constructing the depth map
— use existing hardware depth buffer
— read back the depth buffer contents
« Depth map can copied to a 2D texture

— unfortunately, depth values tend to require more precision
than 8-bit typical for textures (more on this later)

Render Scene and
Access the Depth Texture

SAMEDevelopers

OO0 ODGOA,2000

Realizing the theory In practice

« Fragment’s light position can be generated using eye-linear
texture coordinate generation

— specifically OpenGL’s GL_EYE LINEAR texgen

— generate homogenous (s, t, r,) texture coordinates as
light-space (X, Yy, z, w)

— T&L engines such as GeForce accelerate texgen!

— relies on projective texturing

What Is
Projective Texturing?

\EDevelopers

EEIFBGBEII""IGB 2000

An intuition for projective texturing

* The slide projector analogy

Source: Wolfgang [99]

About
Projective Texturing (1)

SAMEDevelopers

OO0 ODGOA,2000

First, what is perspective-correct texturing?
* Normal 2D texture mapping uses (s, t) coordinates
« 2D perspective-correct texture mapping
— means (s, t) should be interpolated linearly in eye-space
— SO compute per-vertex s/w, t/w, and 1/w
— linearly interpolated these three parameters over polygon
— per-fragment compute s’ = (s/w) / (1/w) and t’ = (t/w) / (1/w)

— results in per-fragment perspective correct (s, t')

About
Projective Texturing (2)

SAMEDevelopers

OO0 ODGOA,2000

So what Is projective texturing?
* Now consider homogeneous texture coordinates

— (s, t, 1, q) --> (s/q, r/q, t/q)

— Similar to homogeneous clip coordinates where
(X,V, z, w) = (X/w, ylw, z/w)

* |dea Is to have (s/q, r/q, t/q) be projected per-fragment
« This requires a per-fragment divider

— yikes, dividers in hardware are fairly expensive

About
Projective Texturing (3)

SAMEDevelopers

OO0 ODGOA,2000

Hardware designer’s view of texturing
« Perspective-correct texturing is a practical requirement
— otherwise, textures “swim”

— perspective-correct texturing already requires the
hardware expense of a per-fragment divider

* Clever idea [Segal, et.al. ‘'92]
— Interpolate g/w instead of simply 1/w

— SO projective texturing Is practically free if you already
do perspective-correct texturing!

About
Projective Texturing (4)

\EDevelopers

EEIFBGBEII""IGB 2000

Tricking hardware into doing projective textures
« By Interpolating g/w, hardware computes per-fragment

— (s/w) / (g/w) = s/q

— (t/w) / (g/w) = t/g
* Net result: projective texturing

— OpenGL specifies projective texturing

— only overhead is multiplying 1/w by g

— but this Is per-vertex

Projective Texturing
Multitexturing

SAMEDevelopers

OO0 ODGOA,2000

An aside about projective multi-texturing

« Multi-texturing Is easier If all texture units are required only to
be perspective-correct

— Just requires a single hyperbolic interpolator (effectively
shares a single divider among multiple texture units)

— because 1/w Is the same for all texture units
« But multi-textured projective textures is harder
— each texture unit could have a different g

— therefore a different g/w per texture unit

NAVAIBIANES
Projective Texturing Story

SAMEDevelopers

OO0 ODGOA,2000

Different generations differ

 TNT generation has a single shared hyperbolic interpolator
— Independently projected dual textures do not work
— not enough gates for dual-projective in TNT timeframe

« GeForce generation has distinct g/w hyperbolic interpolators
for both texture units (bigger gate budget buys correctness)

— dual projective textures works

 Not sure what other vendors do

Back to the Shadow
Mapp|ng DlSCUSSIOn . PEDOO00 ®DAA 2000

—

SAMEDevelopers

Assign light-space texture coordinates via texgen

« Transform eye-space (X, y, z, w) coordinates to the light’'s
view frustum (match how the light’s depth map is generated)

* Further transform these coordinates to map directly into the
light view’s depth map

* EXpressible as a projective transform

— load this transform into the 4 eye linear plane equations
for S, T, and Q coordinates

e (s/q, t/g) will map to light’s depth map texture

OpenGL’s Standard

Vertex Coordinate Transform

\EDevelopers

From object coordinates to window coordinates

EEIFBGBEII""IGB 2000

object , | modelview €¥€ | projection clip
coordinates matrix coordinates matrix coordinates
(X,Y,2Z,W) (X,VY,2Z,W) (X,Y,2Z,W)
divide normalized viewport & window
b > | depth NP LT
1y i device epth range | coordinates

coordinates on\./va.rt.j to
(X, Y, 2) primitive

assembly

Eye Linear Texture
Coordinate Generation

\EDevelopers

EEIFBGBEII""IGB 2000

Generating texture coordinates from eye-space

eye-linear
—» | plane — > (s,t,r,Q)
equations
object , | modelview eye | , | projection clip
coordinates| Matrix |coordinates matrix coordinates

Y

divide normalized |vjewport & window
> > (X,Y,2)
by w device [depthrange| qordinates

coordinates

Setting Up
Eye Linear Texgen

SAMEDevelopers

OO0 ODGOA,2000

With OpenGL

GLfloat Splane[4], Tplane[4], Rplane[4], Qplane[4];
glTexGenfv(GL_S, GL_EYE_ PLANE, Splane);
glTexGenfv(GL_T, GL_EYE_PLANE, Tplane);
glTexGenfv(GL_R, GL_EYE PLANE, Rplane);
glTexGenfv(GL_Q, GL_EYE_PLANE, Qplane);
glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);
glEnable(GL_TEXTURE_GEN_R);
glEnable(GL_TEXTURE_GEN_Q);

Each plane equation is transformed by current inverse
modelview matrix (a very handy thing for us)

Eye Linear
Texgen Transform

\EDevelopers

EEIFBGBEII""IGB 2000

Plane equations form a projective transform

S Splane[0] Splane[l] Splane[2] Splane[3] Xq
t _ Tplane[0] Tplane[l] Tplane[2] Tplane[3] Yo
r Rplane[0] Rplane[l] Rplane[2] Rplane[3] L
| g J Qplane[0] Qplane[l] Oplane[2] Qplane[3] W

The 4 eye linear plane equations form a 4x4 matrix
(No need for the texture matrix!)

Shadow Map Eye Linear BAMED
GAMEDevelopers
Texgen Transform

OO0 ODGOA,2000

Xe Eye Xo glTexGen automatically applies this
y : : y when modelview matrix contains just
= = 2 Modeling 0 the eye view transform
Z, (look at) matrix Z,
matrix
We W, /
T - - - = / N
1/2 1/2
S Light Light Inverse Xe
O 12 12 frustum view 2= Ve
r _ (projection) (look at) iS4 7
1/2 1/2 matrix matrix (look at) ©
q matrix W
I L 14 L J L J L J L _
\ /

Supply this combined transform to glTexGen

Shadow Map
Operation

SAMEDevelopers

OO0 ODGOA,2000

Automatic depth map lookups
« After the eye linear texgen with the proper transform loaded

— (s/q, t/q) Is the fragment’s corresponding location within
the light's depth texture

— 1/q Is the Z planar distance of the fragment relative to the
light’s frustum, scaled and biased to [0,1] range

« Next compare texture value at (s/q, t/q) to value r/q

— If texture[s/q, t/q] Ur/g then not shadowed

— If texture[s/q, t/q] <r/q then shadowed

Dedicated Hardware
Shadow Mapping Support

SAMEDevelopers

OO0 ODGOA,2000

SGIl RealityEngine and InfiniteReality Hardware
« Performs the shadow test as a texture filtering operation
— looks up texel at (s/q, t/q) in a 2D texture
— compares lookup value to r/qg
— If texel Is greater than or equal to r/q, then generate 1.0
— If texel Is less than r/q, then generate 0.0
« Modulate color with result

— zero If fragment is shadowed or unchanged color if not

OpenGL Extensions for
Shadow Map Hardware

SAMEDevelopers

OO0 ODGOA,2000

Two extensions work together
« SGIX depth_texture

— supports high-precision depth texture formats

— copy from depth buffer to texture memory supported
« SGIX shadow

— adds “shadow comparison” texture filtering mode

— compares r/qg to texel value at (s/q, t/q)

An Alternative to Dedicated
Shadow Mapping Hardware

SAMEDevelopers

OO0 ODGOA,2000

Consumer 3D hardware solution

* Proposed by Wolfgang Heidrich in his 1999 Ph.D. thesis

« Leverages today’s consumer multi-texture hardware
— 1st texture unit accesses 2D depth map texture
— 2nd texture unit accesses 1D Z range texture

« Extended texture environment subtracts 2nd texture from 1st
— shadowed if greater than zero, unshadowed otherwise

— use alpha test to discard shadowed fragments

Dual-texture Shadow
Mapping Approach

SAMEDevelopers

OO0 ODGOA,2000

Constructing the depth map texture
* Render scene from the light view (can disable color writes)

— use glPolygonOffset to bias depth values to avoid surfaces
shadowing themselves in subsequent shadow test pass

— perform bias during depth map construct instead of during
shadow testing pass so bias will be in depth buffer space

* Read back depth buffer with glReadPixels as unsigned bytes

* Load same bytes into GL_INTENSITYS8 texture via
glTexlmage2D

Dual-texture Shadow
Mapping Approach

SAMEDevelopers

OO0 ODGOA,2000

Depth map texture issues

 limited to 8-bit precision
— not a lot of precision of depth
— more about this issue later

* un-extended OpenGL provides no direct depth copy
— cannot copy depth buffer to a texture directly

— must glReadPixels, then glTeximage2D

Dual-texture Shadow
Mapping Approach

SAMEDevelopers

OO0 ODGOA,2000

Two-pass shadow determination

« 1st pass: draw everything shadowed

— render scene with light disabled -or- dimmed substantially
and specular light color of zero

— with depth testing enabled

« 2nd pass: draw unshadowed, rejecting shadowed fragments
— use glDepthFunc(GL_EQUAL) to match 1st pass pixels
— enable the light source, un-rejected pixels = unshadowed

— use dual-texture as described in subsequent slides

Dual-texture Shadow
Mapping Approach

SAMEDevelopers

OO0 ODGOA,2000

Dual-texture configuration
« 1st texture unit
— bind to 2D texture containing light's depth map texture
— Intensity texture format (same value in RGB and alpha)
* 2nd texture unit
— bind to 1D texture containing a linear ramp from 0 to 1

— maps S texture coordinate in [0, 1] range to intensity value
in [0, 1] range

Dual-texture Shadow
Mapping Approach

\EDevelopers

EEIFBGBEII""IGB 2000

Texgen Configuration
« 1st texture unit using 2D texture

— generate (s/q, t/q) to access depth map texture, ignore R

1/2 1/2
) Light Light Inverse Xe
t _ 1/2 1/2 frustum view eé/e Ye
— . view
rojection look at
(proj .) (.) (look at) Ze
matrix matrix)
q matrix We
1
N\ / N\ '\/ glTexGen

Supply this combined transform to glTexGen

automatically
applies this

Dual-texture Shadow
Mapping Approach

\EDevelopers

EEIFBGBEII""IGB 2000

Texgen Configuration

e 2nd texture unit using 1D texture

— generate Z planar distance in S, flips what R is into S

1/2 1/2
S 91 Light Light
_ 1/2 1/2 frustum view
R (projection) (look at)
q 12 1/2 matrix matrix
1
h— — S— 1 — — — — f—
AN /

Supply this combined transform to glTexGen

AN

Inverse
eye
view
(look at)
mautrix

/
-

glTexGen
automatically
applies this

Dual-texture Shadow
Mapping Approach

SAMEDevelopers

OO0 ODGOA,2000

Texture environment (texenv) configuration

« Compute the difference between Tex0 from Tex1
— un-extended OpenGL texenv cannot subtract

« But can use standard EXT texture_env_combine extension
— add signed operation

— compute fragment alpha as
alpha(Tex0) + (1 - alpha(Tex1)) - 0.5

— result is greater or equal to 0.5 when Tex0 >= Tex1
result is less than 0.5 when Tex0 < Tex1

Dual-texture Shadow
Mapping Approach

- Developers

EEEIBGBBFIGEh 000

Texture environment (texenv) specifics

glActiveTextureARB(GL_TEXTUREQO ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE EXT);

glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_EXT, GL_REPLACE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCEO_RGB_EXT, GL_PRIMARY COLOR_EXT);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERANDO_RGB EXT, GL_SRC COLOR);

glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA EXT, GL _REPLACE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCEO_ALPHA EXT, GL _TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERANDO_ALPHA EXT, GL SRC ALPHA);

glActiveTextureARB(GL_TEXTURE1 ARB);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE EXT);

glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB EXT, GL REPLACE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCEO_RGB EXT, GL _PREVIOUS EXT);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERANDO_RGB EXT, GL _SRC COLOR);

glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA EXT, GL ADD SIGNED EXT):
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCEQ ALPHA EXT, GL_PREVIOUS EXT);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERANDO_ALPHA EXT, GL SRC_ALPHA);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1 ALPHA EXT, GL TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1 ALPHA EXT, GL ONE_MINUS SRC ALPHA);

Dual-texture Shadow
Mapping Approach

SAMEDevelopers

OO0 ODGOA,2000

Post-texture environment result
 RGB is lit color (lighting Is enabled during second pass)
« Alpha is the biased difference of TO and T1

— unshadowed fragments have alpha >= 0.5

— shadowed fragments have an alpha of < 0.5

Dual-texture Shadow
Mapping Approach

SAMEDevelopers

OO0 ODGOA,2000

Next, reject shadowed fragments

« shadowed or unshadowed depends on alpha value
— less than 0.5 means shadowed

 use the alpha test to rejected shadowed fragments
— glEnable(GL_ALPHA TEST)
— glAlphaFunc(GL_GREATER, 0.5)

Dual-texture Shadow
Mapping Approach

\EDevelopers

EEIFBGBEII""IGB 2000

Careful about self-shadowing

« fragments are likely to shadow themselves

N

— surface casting shadow S

must not shadow Itself
©

— “near equality” common : \
when comparing Tex0 .- RN
and Tex1 .

Dual-texture Shadow
Mapping Approach

SAMEDevelopers

OO0 ODGOA,2000

Biasing values in depth map helps

 recall glPolygonOffset suggestion during the depth map
construction pass

« this bias should be done during depth map construction
— biases In the texgen transform do not work

— problem is depth map has non-linear distribution due to
projective frustum

« polygon offset scale keeps edge-on polygons from self-
shadowing

Depth Map Bias
Issues

\EDevelopers

EEIFBGBEII""IGB 2000

How much polygon offset bias depends

) r 4 " 4
;. .
e ot ¢
7 .
g <F
o ® f
.
. € .
] . ¢ $ ', [
Too little bias, " 4 . .
.] "‘ ' Too little bias, shadow
everything begins to <
shadow " 4 starts too far back
']
Just right

Selecting the
Depth Map Bias

SAMEDevelopers

OO0 ODGOA,2000

Not that hard

« Usually the following works well
— glPolygonOffset(scale = 1.0, bias = 4.0)

e Usually better to error on the side of too much bias
— adjust to suit the shadow issues In your scene

« Depends somewhat on shadow map precision

— more precision requires less of a bias

Dual-texture Shadow
Mapping Precision

SAMEDevelopers

OO0 ODGOA,2000

Is 8-bit precision enough?
« yes, for some simple scenes

— when the objects are relatively distant from the light, but
still relatively close together

* no, in general
— an 8-bit depth buffer is not enough depth discrimination

— and the precision is badly distributed because of
perspective

Dual-texture Shadow
Mapping Precision

GAMEDevelopers

OO0 ODGOA,2000

Conserving your 8-bit de

0th map precision

-

.,
-
r\-‘:f
:‘.-
- B
-
-

Ny

Frustum confined to objects of interest

Frustum expanded out considerably
breaks down the shadows

Improving Depth Map
Precision

SAMEDevelopers

OO0 ODGOA,2000

Use linear depth precision [Wolfgang 99]
« During depth map construction

— generate S texture coordinate as eye planar Z distance
scaled to [O, 1] range

— lookup S in identity 1D intensity texture

— write texture result into color frame buffer

— still using standard depth testing

— read alpha (instead of depth) and load it in depth map texture

— alpha will have linear depth distribution (better!)

Improving Depth Map
Precision

SAMEDevelopers

OO0 ODGOA,2000

More hardware color component precision
* high-end workstations support more color precision

— SGI's InfiniteReality, RealityEngine, and Octane
workstations support 12-bit color component precision

* but no high precision color buffers in consumer 3D space

— consumer 3D designs too tied to 32-bit memory word size
of commodity RAM

— and overkill for most consumer applications anyway

Improving Depth Map
Precision

SAMEDevelopers

OO0 ODGOA,2000

Use multi-digit comparison

« fundamental shadow determination operation Is a
comparison

— comparisons (unlike multiplies or other operations) are
easy to extend to higher precision

 think about comparing two 2-digit numbers: 54 and 82
— 54 Is less than 82 simply based on the first digit (5 < 8)

— only when most-significant digits are equal do you need to
look at subsequent digits

More Precision Allows
Larger Lights Frustums

SAMEDevelo pers

OO0 ODGOA,2000

Compare 8-bit to 16-bit precision for large frustum

- -
- -
e

=
SRR
A

f:}";‘ ’ 'f}“#‘ ’
l":'." ¢ l"l' | -
£/ JF ¢ £

”

8-bit: Large frustum breaks down the
shadows, not enough precision

- -
- -
e

=
SRR
A

16-bit:

Shadow looks just fine

Why Extra Precision
Helps

SAMEDevelopers

PEODOOO0O DEGEOA/2000

Where the precision Is for previous images

Most significant 8 bits of the depth map, Least significant 8 bits of the depth map,
pseudo-color inset magnifies variations here is where the information is!

GeForce/Quadro
Precision Extension

SAMEDevelopers

OO0 ODGOA,2000

Application of multi-digit comparison idea

* Read back depth buffer as 16-bit unsigned short values

* Load these values into GL_LUMINANCES8 ALPHAS texture
— think of depth map as two 8-bit digits

- Two comparison passes

« Uses NV_register _combiners extension
— signed math and mux’ing helps

— enough operations to test equality and greater/less than

GeForce/Quadro
Precision Extension

SAMEDevelopers

OO0 ODGOA,2000

Multi-digit comparison passes

 during clear, clear stencil buffer to O

« 1st pass draws unshadowed scene as before

 2nd
— al

— al

nass draws unshadowed

oha = bigDigit(Tex0) < bigDigit(Tex1)

pha test with glAlphaFunc(GL_GREATER, 0.0)

— and write 1 into stencil buffer when alpha test passes

* needs 3rd pass for when bigDigit(Tex0) = bigDigit(Tex1)

GeForce/Quadro
Precision Extension

SAMEDevelopers

OO0 ODGOA,2000

Third pass picks up the extra 8 bits of precision

« Use NV_register_combiners to assign alpha as follows

— If bigDigit(Tex1) > bigDigit(Tex0) then
alpha =0
else
alpha = littleDigit(TexO0) - littleDigit(Tex1)

* Use alpha test with glAlphaFunc(GL GREATER, 0.0)
+ Also reject fragment if the stencil value is 1

— meaning the 2nd pass already updated the pixel

Combining Shadow Mapping
with other Technigues

SAMEDevelopers

PEDOBDODODEGE,2000

Good In combination with techniques
« Use stencil to tag pixels as inside or outside of shadow
* use other rendering techniques in extra passes

— bump mapping

— texture decals, etc.

« Shadow mapping can be integrated into more complex multi-
pass rendering algorithms

Issues with Shadow
Mapping (1)

SAMEDevelopers

OO0 ODGOA,2000

Not without its problems

* Prone to aliasing artifacts
— “percentage closest” filtering helps this
— normal color filtering does not work well
* Depth bias is not completely foolproof
* Requires extra shadow map rendering pass and texture loading
« Higher resolution shadow map reduces blockiness

— but also increase texture loading expense

Issues with Shadow
Mapping (2)

SAMEDevelopers

OO0 ODGOA,2000

Not without its problems
* Shadows are limited to view frustums
— could use six view frustums for omni-directional light

* Objects outside or crossing the near and far clip planes are
not properly accounted for by shadowing

— move near plane in as close as possible

— but too close throws away valuable depth map precision
when using a projective frustum

Hybrid of Shadow Volumes \EDevelopers
and Shadow Mapping "

PEDOBDODODEGE,2000

Very clever idea [McCool 98]
* Render scene from light source with depth testing

* Read back the depth buffer

« Use computer vision techniques to reconstruct the shadow
volume geometry from the depth buffer image

« Very reasonable results for complex scenes

e Only requires stencill

— no multitexture and texture environment differencing
required

\EDevelopers

EEIFBGBEII""IGB 2000

More Examples

Smooth surfaces with object self-shadowing

3
2

1

|

Note object self-shadowing

\EDevelopers

EEIFBGBEII""IGB 2000

More Examples

Complex objects all shadow

\EDevelopers

EEIFBGBEII""IGB 2000

More Examples

Even the floor casts shadow

Note shadow
leakage due to

/infinitely thin floor
l\ Could be fixed by
| giving floor
q thickness

Shadow Mapping
Source Code

SAMEDevelopers

OO0 ODGOA,2000

Find it on the NVIDIA web site

* The source code

— http://www.nvidia.com/opengl/ShadowMap

— Works on TNT, GeForce, & Quadro

— And vendors that support EXT_texture _env_combine
* NVIDIA OpenGL Extension Specifications

— documents EXT _texture env_combine and
NV _register_combiners

— http://www.nvidia.com/opengl/openglspecs

SAMEDevelopers

Cred”:S PEOOOOGORB,2000

The inspiration for these ideas

« Wolfgang Heidrich, Max-Planck Institute for Computer
Science

— original dual-texture shadow mapping idea

— read his thesis High-quality Shading and Lighting for
Hardware-accelerated Rendering

« Michael McCool, University of Waterloo

— suggested idea for multi-digit shadow comparisons

