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MV4470 Topic Summary

Topic: An Improved Illumination Model for Shaded Display

The role of an illumination model is used to determine how much light is reflected to the viewer from a visible point on a surface as a function of light source direction and strength, viewer position, surface orientation and surface properties.  In general, shading is calculated within a model on three basic scales: microscopic, local and global.  The microscopic level is where realism in shading is performed through the interaction of light rays amidst these very small facets on the surface.  The local scale is the most common scale used for computer graphics.  It reflects the light sources in a scene and represents the interaction of those light sources with the basic surfaces of objects in the scene.  Global data incorporates the interaction of light between the objects in the scene as they reflect light rays to other objects and eventually to the viewer.  The paper by Turner Whitted focuses on the use of this global data for its shading model.

As mentioned, most illumination models use local data alone in their shading.  This, of course is very limited.  These models consider only the lights interaction with the object and back to the viewer, but fail to make a connection between those light rays and other elements in the scene.  The decision to do this is no doubt a trade-off between realism and computational feasibility.  Representing the global data in a shading model means an exponential growth in the number of calculations needed.  Instead of tracing a ray from a light source to an object and then to the viewer, you are tracing it as it interacts with other objects in the scene.  A ray may interact with numerous objects before reaching the eye of the viewer. 

Conventional models have traditionally been based on three different methods in order of evolution.  First is the flat shading method where one color is assigned to each polygon in an object.  The result is an uneven and rough distribution of shading making the object’s surface appear "blocky" because junctions between polygons are still visible.  The second method is Gouraud shading. It involves calculating the color at each of a polygon's vertices and blending these colors into each other across the surface of the polygon. This hides the junctions between polygons and produces a smoother appearance in curved object surfaces. Unfortunately, unless extra calculations are done, this can mean that smoothing also happens at junctions, which should remain sharply visible, such as those at the edges of a cube. Though able to represent diffuse highlights, Gouraud shading doesn't handle specular highlights at all well; so all object surfaces appear to have a matt texture.  The last method is the best, however, it involves the most computing power of the three.  It’s the Phong shading method. It too bases its calculations on polygon vertices but also takes into account the way that light will be reflected from each point within a polygon, not just its intensity or color. The resultant image produces much more realistic objects, especially if the object is one in which we are used to seeing sharply defined reflections from light sources.

The improved model described in the paper uses the Phong model as a basis for improvement.  The author first looked at Phong’s representation of diffuse reflection and determined that he would use this as the foundation for his work, making no improvements to this aspect of the model.  Ideally the diffuse reflection should represent all sources of light in the scene, including reflections from nearby objects, however, he determined that too much computation was required for the benefit provided in the diffuse lighting.

Instead, the author chose to focus on improving the specular aspects of the model.  Again, much like the diffuse portion of the model, the ideal situation would be to represent the reflective aspects, as they exist in the real world.  Specular reflection from a smooth surface represents little problem, however, reflection from a roughened surface is much more difficult.  Reflection of this type occurs as the result of the light’s interaction with microscopic mirror-like facets on the surface of an object.  The intensity of the reflected light is dependent upon a how the surface normals of these facets are distributed.  To simulate this, the author suggested a model that takes this distribution into account by a random perturbation to the surface normal of an object.  However, although this would nicely represent reality, it again consumed too many computational resources.  He chose to stay with Phong’s model at the point of reflection. 

In a scene of even moderate complexity light will often be reflected from several surfaces before reaching the viewer.  The author gave a simple two-object model of this principle.  The model represented a single ray of light reflecting from a surface onto another, then to the viewer.  Since light, which is incident upon a surface, will in general be partially reflected and partially transmitted as a refracted ray, the author is able to represent the phenomena using a binary tree.  At the root of this tree is the viewer, with all resulting reflections coming to that point.  The methodology for describing this behavior is called reverse ray tracing and is used by the author to determine the type of visible surface algorithm to effectively model these reflections.

The visible surface algorithm implemented had to participate in the anti-aliasing of the objects.  This was necessary to alleviate the choppy presentation of the shaded polygons.  The author described three cases in which aliasing occurred: when there is an abrupt change of light intensity, when small objects fall between sampling points and when a sample function is mapped to the surface of an object (i.e. texturing).  Since filtering the entire scene for aliasing is expensive, the visible surface algorithm instead scans for those regions that are affected by one of the three aforementioned cases and filters only those regions.

The algorithm was programmed and tested within defined parameters to determine the usability and realism of the presentation.  The author programmed it in C and ran the version on a UNIX operating system.  He used two processors, a PDP-11/45 and a VAX-11/780 with a picture resolution of 480 X 640 pixels (each pixel representing 9 bits of data).

Four images of varying complexity were displayed.  The first was an image of three glossy objects with shadows and object-to-object reflections.  It took 44 minutes to render.  The second was an image representing refraction through a transparent object.  It took 74 minutes to render.  The third had no descriptive breakdown, but took 122 minutes to render.  No mention was given to the fourth in the paper.  The breakdown of processing time was:  overhead 13%, intersection 75%, and shading 12%.

The author felt that while the model generated very realistic effects, it left considerable room for improvement.  Specifically, it did not provide for diffuse reflection from distributed light sources, nor did it gracefully handle specular reflections from less glossy surfaces.  
