
Shadow Mapping
with Today’s OpenGL Hardware

CEDEC 2001
Tokyo, Japan

Shadow Mapping
with Today’s OpenGL Hardware

CEDEC 2001
Tokyo, Japan

2

Mark J. Kilgard
Graphics Software Engineer
NVIDIA Corporation

3

Motivation for
Better Shadows

• Shadows increase scene realism
• Real world has shadows
• More control of the game’s feel

• dramatic effects
• spooky effects

• Other art forms recognize the value of
shadows

• But yet most games lack realistic shadows

4

Common Real-time
Shadow Techniques

ShadowShadow
volumesvolumes

Light mapsLight maps

ProjectedProjected
planarplanar
shadowsshadows

HybridHybrid
approachesapproaches

5

Problems with Common
Shadow Techniques

• Mostly tricks with lots of limitations
• Projected planar shadows

• well works only on flat surfaces
• Stenciled shadow volumes

• determining the shadow volume is hard work
• Light maps

• totally unsuited for dynamic shadows
• In general, hard to get everything shadowing

everything

6

Introducing Another Technique:
Shadow Mapping

• Image-space shadow determination
• Lance Williams published the basic idea in 1978

• By coincidence, same year Jim Blinn invented
bump mapping (a great vintage year for
graphics)

• Completely image-space algorithm
• means no knowledge of scene’s geometry is

required
• must deal with aliasing artifacts

• Well known software rendering technique
• Pixar’s RenderMan uses the algorithm
• Basic shadowing technique for Toy Story, etc.

7

Shadow Mapping
References

• Important SIGGRAPH papers
• Lance Williams, “Casting Curved Shadows on

Curved Surfaces,” SIGGRAPH 78
• William Reeves, David Salesin, and Robert Cook

(Pixar), “Rendering antialiased shadows with depth
maps,” SIGGRAPH 87

• Mark Segal, et. al. (SGI), “Fast Shadows and
Lighting Effects Using Texture Mapping,”
SIGGRAPH 92

8

The Shadow Mapping
Concept (1)

• Depth testing from the light’s point-of-view
• Two pass algorithm
• First, render depth buffer from the light’s point-of-

view
• the result is a “depth map” or “shadow map”
• essentially a 2D function indicating the depth of

the closest pixels to the light
• This depth map is used in the second pass

9

The Shadow Mapping
Concept (2)

• Shadow determination with the depth map
• Second, render scene from the eye’s point-of-view
• For each rasterized fragment

• determine fragment’s XYZ position relative to
the light

• this light position should be setup to match the
frustum used to create the depth map

• compare the depth value at light position XY in
the depth map to fragment’s light position Z

10

The Shadow Mapping
Concept (3)

• The Shadow Map Comparison
• Two values

• A = Z value from depth map at fragment’s light XY
position

• B = Z value of fragment’s XYZ light position
• If B is greater than A, then there must be

something closer to the light than the fragment
• then the fragment is shadowed

• If A and B are approximately equal, the fragment is
lit

11

Shadow Mapping
with a Picture in 2D (1)

light
source

eye
position

depth map Z = A

fragment’s
light Z = B

depth map image plane

eye view image plane,
a.k.a. the frame buffer

The A < B shadowed fragment case

12

Shadow Mapping
with a Picture in 2D (2)

light
source

eye
position

depth map Z = A

fragment’s
light Z = B

depth map image plane

eye view image plane,
a.k.a. the frame buffer

The A ≅≅≅≅ B unshadowed fragment caseThe A ≅≅≅≅ B unshadowed fragment case

13

Note image precision mismatch!Note image precision mismatch!

The depth mapThe depth map
could be at acould be at a
different resolutiondifferent resolution
from the framebufferfrom the framebuffer

This mismatch canThis mismatch can
lead to artifactslead to artifacts

Shadow Mapping
with a Picture in 2D (3)

14

Visualizing the Shadow
Mapping Technique (1)

• A fairly complex scene with shadows

the pointthe point
light sourcelight source

15

Visualizing the Shadow
Mapping Technique (2)

• Compare with and without shadows

with shadowswith shadows without shadowswithout shadows

16

Visualizing the Shadow
Mapping Technique (3)

• The scene from the light’s point-of-view

FYI: from theFYI: from the
eye’s pointeye’s point--ofof--viewview
againagain

17

Visualizing the Shadow
Mapping Technique (4)

• The depth buffer from the light’s point-of-view

FYI: from theFYI: from the
light’s pointlight’s point--ofof--viewview
againagain

18

Visualizing the Shadow
Mapping Technique (5)

• Projecting the depth map onto the eye’s view

FYI: depth map forFYI: depth map for
light’s pointlight’s point--ofof--viewview
againagain

19

Visualizing the Shadow
Mapping Technique (6)

• Projecting light’s planar distance onto eye’s view

20

Visualizing the Shadow
Mapping Technique (6)

• Comparing light distance to light depth map

Green is Green is
where the where the

light planar light planar
distance and distance and

the light the light
depth map depth map

are are
approximatelapproximatel

y equaly equal

NonNon--green is green is
where where
shadows shadows
should beshould be

21

Visualizing the Shadow
Mapping Technique (7)

• Scene with shadows

Notice how Notice how
specular specular

highlights highlights
never appear never appear

in shadowsin shadows

Notice how Notice how
curved curved
surfaces cast surfaces cast
shadows on shadows on
each othereach other

22

Construct
Light View Depth Map

• Realizing the theory in practice
• Constructing the depth map

• use existing hardware depth buffer
• use glPolygonOffset to offset depth value back
• read back the depth buffer contents

• Depth map can be copied to a 2D texture
• unfortunately, depth values tend to require

more precision than 8-bit typical for textures
• depth precision typically 16-bit or 24-bit

23

Justification for glPolygonOffset
When Constructing Shadow Maps

• Depth buffer contains “window space” depth
values
• Post-perspective divide means non-linear

distribution
• glPolygonOffset is guaranteed to be a window

space offset
• Doing a “clip space” glTranslatef is not sufficient

• Common shadow mapping implementation mistake
• Actual bias in depth buffer units will vary over the

frustum
• No way to account for slope of polygon

24

Sampling a Polygon’s Depth
at Pixel Centers (1)

• Consider a polygon covering pixels in 2D

X

Z

Pixel centers

Polygon

25

Sampling a Polygon’s Depth
at Pixel Centers (2)

X

Z

X

Z

• Consider a 2nd grid for the polygon covering
pixels in 2D

26

Sampling a Polygon’s Depth
at Pixel Centers (3)

• How Z changes with respect to X

X

Z
∂∂∂∂z/∂∂∂∂x

27

Why You Need
glPolygonOffset’s Slope

• Say pixel center is re-sampled to another grid
• For example, the shadow map texture’s grid!

• The re-sampled depth could be off by
+/-0.5 ∂∂∂∂z/∂∂∂∂x and +/-0.5 ∂∂∂∂z/∂∂∂∂y

• The maximum absolute error would be
| 0.5 ∂∂∂∂z/∂∂∂∂x | + | 0.5 ∂∂∂∂z/∂∂∂∂y | ≈≈≈≈ max(| ∂∂∂∂z/∂∂∂∂x | , | ∂∂∂∂z/∂∂∂∂y |)

• This assumes the two grids have pixel footprint area
ratios of 1.0

• Otherwise, we might need to scale by the ratio
• Exactly what polygon offset’s “slope” depth bias

does

28

Depth Map Bias
Issues

• How much polygon offset bias depends

Too little bias,Too little bias,
everything begins toeverything begins to
shadowshadow

Too much bias, shadowToo much bias, shadow
starts too far backstarts too far back

Just rightJust right

29

Selecting the
Depth Map Bias

• Not that hard
• Usually the following works well

• glPolygonOffset(scale = 1.1, bias = 4.0)
• Usually better to error on the side of too much bias

• adjust to suit the shadow issues in your scene
• Depends somewhat on shadow map precision

• more precision requires less of a bias
• When the shadow map is being magnified, a larger

scale is often required

30

Render Scene and
Access the Depth Texture

• Realizing the theory in practice
• Fragment’s light position can be generated using

eye-linear texture coordinate generation
• specifically OpenGL’s GL_EYE_LINEAR

texgen
• generate homogenous (s, t, r, q) texture

coordinates as light-space (x, y, z, w)
• T&L engines such as GeForce accelerate

texgen!
• relies on projective texturing

31

What is
Projective Texturing?

• An intuition for projective texturing
• The slide projector analogy

Source: Wolfgang Heidrich [99]Source: Wolfgang Heidrich [99]

32

About
Projective Texturing (1)

• First, what is perspective-correct texturing?
• Normal 2D texture mapping uses (s, t) coordinates
• 2D perspective-correct texture mapping

• means (s, t) should be interpolated linearly in eye-
space

• so compute per-vertex s/w, t/w, and 1/w
• linearly interpolated these three parameters over

polygon
• per-fragment compute s’ = (s/w) / (1/w) and t’ = (t/w) /

(1/w)
• results in per-fragment perspective correct (s’, t’)

33

About
Projective Texturing (2)

• So what is projective texturing?
• Now consider homogeneous texture coordinates

• (s, t, r, q) --> (s/q, t/q, r/q)
• Similar to homogeneous clip coordinates where

(x, y, z, w) = (x/w, y/w, z/w)
• Idea is to have (s/q, t/q, r/q) be projected per-

fragment
• This requires a per-fragment divider

• yikes, dividers in hardware are fairly expensive

34

About
Projective Texturing (3)

• Hardware designer’s view of texturing
• Perspective-correct texturing is a practical

requirement
• otherwise, textures “swim”
• perspective-correct texturing already requires

the hardware expense of a per-fragment divider
• Clever idea [Segal, et.al. ‘92]

• interpolate q/w instead of simply 1/w
• so projective texturing is practically free if you

already do perspective-correct texturing!

35

About
Projective Texturing (4)

• Tricking hardware into doing projective textures
• By interpolating q/w, hardware computes per-

fragment
• (s/w) / (q/w) = s/q
• (t/w) / (q/w) = t/q

• Net result: projective texturing
• OpenGL specifies projective texturing
• only overhead is multiplying 1/w by q
• but this is per-vertex

36

Back to the Shadow
Mapping Discussion . . .

• Assign light-space texture coordinates via texgen
• Transform eye-space (x, y, z, w) coordinates to the

light’s view frustum (match how the light’s depth
map is generated)

• Further transform these coordinates to map
directly into the light view’s depth map

• Expressible as a projective transform
• load this transform into the 4 eye linear plane equations for

S, T, and Q coordinates
• (s/q, t/q) will map to light’s depth map texture

37

OpenGL’s Standard
Vertex Coordinate Transform

• From object coordinates to window coordinates

objectobject

coordinatescoordinates
(x, y, z, w)(x, y, z, w)

eyeeye

coordinatescoordinates
(x, y, z, w)(x, y, z, w)

modelviewmodelview
matrixmatrix

projectionprojection
matrixmatrix

dividedivide
by wby w

viewport &viewport &
depth rangedepth range

normalized normalized

devicedevice
coordinatescoordinates

(x, y, z)(x, y, z)

clipclip

coordinatescoordinates
(x, y, z, w)(x, y, z, w)

windowwindow

coordinatescoordinates
(x, y, z)(x, y, z)

38

Eye Linear Texture
Coordinate Generation

• Generating texture coordinates from eye-space

objectobject

coordinatescoordinates

eyeeye

coordinatescoordinates
modelviewmodelview

matrixmatrix
projectionprojection

matrixmatrix

dividedivide
by wby w

viewport &viewport &
depth rangedepth range

normalized normalized

devicedevice
coordinatescoordinates

clipclip

coordinatescoordinates

windowwindow

coordinatescoordinates

eyeeye--linearlinear
planeplane

equationsequations
(s, t, (s, t, rr, q), q)

(x, y, z)(x, y, z)

39

Setting Up
Eye Linear Texgen

• With OpenGL
GLfloat Splane[4], Tplane[4], Rplane[4], Qplane[4];
glTexGenfv(GL_S, GL_EYE_PLANE, Splane);
glTexGenfv(GL_T, GL_EYE_PLANE, Tplane);
glTexGenfv(GL_R, GL_EYE_PLANE, Rplane);
glTexGenfv(GL_Q, GL_EYE_PLANE, Qplane);
glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);
glEnable(GL_TEXTURE_GEN_R);
glEnable(GL_TEXTURE_GEN_Q);

• Each eye plane equation is transformed by
current inverse modelview matrix (a very handy
thing for us)
• Note: texgen object planes are not transformed

by the inverse modelview

40

Eye Linear
Texgen Transform

• Plane equations form a projective transform

• The 4 eye linear plane equations form a 4x4 matrix
(No need for the texture matrix!)

ss
tt
rr
qq

Splane[0] Splane[1] Splane[0] Splane[1] Splane[2] Splane[2] Splane[3]Splane[3]

Tplane[0] Tplane[1] Tplane[2] Tplane[3]Tplane[0] Tplane[1] Tplane[2] Tplane[3]

Rplane[0] Rplane[0] Rplane[1] Rplane[2] Rplane[1] Rplane[2] Rplane[3]Rplane[3]

Qplane[0] Qplane[1] Qplane[2] Qplane[3]Qplane[0] Qplane[1] Qplane[2] Qplane[3]

==
xxee
yyee
zzee
wwee

41

Shadow Map Eye Linear
Texgen Transform
Shadow Map Eye Linear
Texgen Transform

1/21/21/2

1/21/21/2

1/21/21/2

111

1/21/21/2

1/21/21/2

1/21/21/2
Light

frustum
(projection)

matrix

LightLight
frustumfrustum

(projection)(projection)
matrixmatrix

Light
view

(look at)
matrix

LightLight
viewview

(look at)(look at)
matrixmatrix

Inverse
eye
view

(look at)
matrix

InverseInverse
eyeeye
viewview

(look at)(look at)
matrixmatrix

Eye
view

(look at)
matrix

EyeEye
viewview

(look at)(look at)
matrixmatrix

Modeling
matrix

ModelingModeling
matrixmatrix

xo
yo
zo
wo

xxoo
yyoo
zzoo
wwoo

xe
ye
ze
we

xxee
yyee
zzee
wwee

===

===
xe
ye
ze
we

xxee
yyee
zzee
wwee

s
t
r
q

ss
tt
rr
qq

glTexGen automatically applies
this when modelview matrix
contains just the eye view

transform

glTexGen automatically applies glTexGen automatically applies
this when modelview matrix this when modelview matrix
contains just the eye view contains just the eye view

transformtransform

Supply this combined transform to glTexGenSupply this combined transform to glTexGenSupply this combined transform to glTexGen

42

Shadow Map
Operation

• Automatic depth map lookups
• After the eye linear texgen with the proper transform

loaded
• (s/q, t/q) is the fragment’s corresponding location

within the light’s depth texture
• r/q is the Z planar distance of the fragment

relative to the light’s frustum, scaled and biased
to [0,1] range

• Next compare texture value at (s/q, t/q) to value r/q
• if texture[s/q, t/q] ≅≅≅≅ r/q then not shadowed
• if texture[s/q, t/q] < r/q then shadowed

43

Dedicated Hardware
Shadow Mapping Support

• SGI RealityEngine, InfiniteReality, GeForce3
and Xbox Hardware
• Performs the shadow test as a texture filtering

operation
• looks up texel at (s/q, t/q) in a 2D texture
• compares lookup value to r/q
• if texel is greater than or equal to r/q, then

generate 1.0
• if texel is less than r/q, then generate 0.0

• Modulate color with result
• zero if fragment is shadowed or unchanged

color if not

44

OpenGL Extensions for
Shadow Map Hardware

• Two extensions work together
• SGIX_depth_texture

• supports high-precision depth texture formats
• copy from depth buffer to texture memory

supported
• SGIX_shadow

• adds “shadow comparison” texture filtering
mode

• compares r/q to texel value at (s/q, t/q)
• Multi-vendor support: SGI, NVIDIA, others?

• Brian Paul has implemented these extensions in
Mesa!

45

New Depth Texture
Internal Texture Formats

• SGIX_depth_texture supports textures containing
depth values for shadow mapping

• Three new internal formats
• GL_DEPTH_COMPONENT16_SGIX
• GL_DEPTH_COMPONENT24_SGIX
• GL_DEPTH_COMPONENT32_SGIX

(same as 24-bit on GeForce3)
• Use GL_DEPTH_COMPONENT for your external

format
• Work with glCopySubTexImage2D for fast copies from

depth buffer to texture
• NVIDIA optimizes these copy texture paths

46

Depth Texture Details
• Usage example:

glCopyTexImage2D(GL_TEXTURE_2D, level=0,
internalfmt=GL_DEPTH_COMPONENT24_SGIX,
x=0, y=0, w=256, h=256, border=0);

• Then use glCopySubTexImage2D for faster updates once
texture internal format initially defined

• Hint: use GL_DEPTH_COMPONENT for your texture
internal format
• Leaving off the “n_SGIX” precision specifier tells the

driver to match your depth buffer’s precision
• Copy texture performance is optimum when depth

buffer precision matches the depth texture precision

47

Depth Texture Copy Performance
• The more depth values you copy, the slower the

performance
• 512x512 takes 4 times longer to copy than 256x256
• Tradeoff: better defined shadows require higher

resolution shadow maps, but slows copying
• 16-bit depth values copy twice as fast as 24-bit

depth values (which are contained in 32-bit
words)
• Requesting a 16-bit depth buffer (even with 32-bit

color buffer) and copying to a 16-bit depth texture
is faster than using a 24-bit depth buffer

• Note that using 16-bit depth buffer usually
requires giving up stencil

48

Hardware Shadow
Map Filtering

• “Percentage Closer” filtering
• Normal texture filtering just averages color

components
• Averaging depth values does NOT work
• Solution [Reeves, SIGGARPH 87]

• Hardware performs comparison for each sample
• Then, averages results of comparisons

• Provides anti-aliasing at shadow map edges
• Not soft shadows in the umbra/penumbra sense

49

Hardware Shadow Map
Filtering Example

GL_NEAREST: blockyGL_NEAREST: blocky GL_LINEAR: antialiased edgesGL_LINEAR: antialiased edges

Low shadow map resolutionLow shadow map resolution
used to heightens filtering artifactsused to heightens filtering artifacts

50

Depth Values are not Blend-able

• Traditional filtering is inappropriate

eye
position

What pixel covers in
shadow map texture

Texel sample
depth = 0.25

Texel sample
depth = 0.63

0.63

0.25 0.25

0.63

Average(0.25, 0.25, 0.63, 0.63) = 0.44
0.57 > 0.44 so pixel is wrongly “in shadow”
Truth: nothing is at 0.44, just 0.25 and 0.57

Pixel depth = 0.57

51

Percentage Closer Filtering

eye
position

What pixel covers in
shadow map texture

Texel sample
depth = 0.25

Texel sample
depth = 0.63

Shadowed Average(0.57>0.25, 0.57>0.25, 0.57<0.63, 0.57<0.63) = 50%
so pixel is reasonably 50% shadowed

(actually hardware does weighted average)

Pixel depth = 0.57

Unshadowed

• Average comparison results, not depth values

52

Mipmap Filtering for Depth Textures
with Percentage Closer Filtering (1)

• Mipmap filtering works
• Averages the results of comparisons form the one

or two mipmap levels sampled
• You cannot use gluBuild2DMipmaps to construct

depth texture mipmaps
• Again, because you cannot blend depth values!

• If you do want mipmaps, the best approach is re-
rendering the scene at each required resolution
• Usually too expensive to be practical for all

mipmap levels
• OpenGL 1.2 LOD clamping can help avoid

rendering all the way down to the 1x1 level

53

Mipmap Filtering for Depth Textures
with Percentage Closer Filtering (2)

• Mipmaps can make it harder to find an
appropriate polygon offset scale & bias that
guarantee avoidance of self-shadowing

• You can get “8-tap” filtering by using (for
example) two mipmap levels, 512x512 and
256x256, and setting your min and max LOD
clamp to 0.5
• Uses OpenGL 1.2 LOD clamping

54

Advice for Shadowed
Illumination Model (1)

• Typical illumination model with decal texture:
(ambient + diffuse) * decal + specular

• The shadow map supplies a shadowing term
• Assume shadow map supplies a shadowing term, shade

• Percentage shadowed
• 100% = fully visible, 0% = fully shadowed

• Obvious updated illumination model for shadowing:
(ambient + shade * diffuse) * decal + shade * specular

• Problem is real-world lights don’t 100% block diffuse
shading on shadowed surfaces
• Light scatters; real-world lights are not ideal

points

55

The Need for
Dimming Diffuse

No dimming; shadowed
regions have 0% diffuse
and 0% specular

With dimming; shadowed
regions have 40% diffuse
and 0% specular

Front facing shadowed
regions appear unnaturally flat.

Still evidence of curvature
in shadowed regions.

No specular
in shadowed
regions in
both versions.

56

Advice for Shadowed
Illumination Model (2)

• Illumination model with dimming:

(ambient + diffuseShade * diffuse) * decal + specular * shade

where diffuseShade is

diffuseShade = dimming + (1.0 – dimming) * shade

• Easy to implement with NV_register_combiners &
OpenGL 1.2 “separate specular color” support
• Separate specular keeps the diffuse & specular per-

vertex lighting results distinct
• NV_register_combiners can combine the primary

(diffuse) and secondary (specular) colors per-pixel
with the above math

57

Careful about
Back Projecting Shadow Maps (1)

• Just like standard projective textures, shadow
maps can back-project

Spotlight casting shadow
(a hooded light source)

Spotlight’s of cone of illumination
where “true” shadows can form

Back-projection of
spotlight’s cone of illumination

Pentagon
would be
incorrectly
lit by back-
projection
if not specially
handled

58

Careful about
Back Projecting Shadow Maps (2)

• Techniques to eliminate back-projection:
• Modulate shadow map result with lighting result from a single

per-vertex spotlight with the proper cut off (ensures is light “off”
behind the spotlight)

• Use a small 1D texture where “s” is planar distance from the
light (generated “s” with a planar texgen mode), then 1D texture
is 0.0 for negative distances and 1.0 for positive distances.

• Use a clip plane positioned at the plane defined by the light
position and spotlight direction

• Simply avoid drawing geometry “behind” the light when applying
the shadow map (better than a clip plane)

• NV_texture_shader’s GL_PASS_THROUGH_NV mode

59

Other Useful OpenGL Extensions for
Improving Shadow Mapping

• ARB_pbuffer – create off-screen rendering surfaces for
rendering shadow map depth buffers

• Normally, you can construct shadow maps in your back
buffer and copy them to texture

• But if the shadow map resolution is larger than your window
resolution, use pbuffers.

• NV_texture_rectangle – new 2D texture target that does not
require texture width and height to be powers of two

• Limitations
• No mipmaps or mipmap filtering supported
• No wrap clamp mode
• Texture coords in [0..w]x[0..h] rather than [0..1]x[0..1]

range.
• Quite acceptable for for shadow mapping

60

Combining Shadow Mapping
with other Techniques

• Good in combination with techniques
• Use stencil to tag pixels as inside or outside of

shadow
• Use other rendering techniques in extra passes

• bump mapping
• texture decals, etc.

• Shadow mapping can be integrated into more
complex multi-pass rendering algorithms

• Shadow mapping algorithm does not require
access to vertex-level data
• Easy to mix with vertex programs and such

61

An Alternative to Dedicated
Shadow Mapping Hardware

• Consumer 3D hardware solution
• Proposed by Wolfgang Heidrich in his 1999 Ph.D.

thesis
• Leverages today’s consumer multi-texture

hardware
• 1st texture unit accesses 2D depth map texture
• 2nd texture unit accesses 1D Z range texture

• Extended texture environment subtracts 2nd
texture from 1st
• shadowed if greater than zero, unshadowed

otherwise
• use alpha test to discard shadowed fragments

62

Issues with Shadow
Mapping (1)

• Not without its problems
• Prone to aliasing artifacts

• “percentage closer” filtering helps this
• normal color filtering does not work well

• Depth bias is not completely foolproof
• Requires extra shadow map rendering pass and

texture loading
• Higher resolution shadow map reduces blockiness

• but also increase texture copying expense

63

Issues with Shadow
Mapping (2)

• Not without its problems
• Shadows are limited to view frustums

• could use six view frustums for omni-directional
light

• Objects outside or crossing the near and far clip
planes are not properly accounted for by
shadowing
• move near plane in as close as possible
• but too close throws away valuable depth map

precision when using a projective frustum

64

Some Theory for Determining Your
Shadow Map Resolution (1)

• Requires knowing how pixels (samples) in the light’s view
compare to the size of pixels (samples) in the eye’s view
• A re-sampling problem

• When light source frustum is reasonably well aligned with the
eye’s view frustum, the ratio of sample sizes is close to 1.0
• Great match if eye and light frustum’s are nearly identical
• But that implies very few viewable shadows
• Consider a miner’s lamp (i.e., a light attached to your

helmet)
• The chief reason for such a lamp is you don’t see

shadows from the lamp while wearing it

65

Some Theory for Determining Your
Shadow Map Resolution (2)

• So best case is miner’s lamp
• Worst case is shadows from light shining at the

viewer
• “that deer in the headlights” problem – definitely

worst case for the deer
• Also known as the “dueling frusta” problem

(frusta, plural of frustum)
• Let’s attempt to visualize what’s happens…

66

Four Images of Dueling Frusta Case

Eye’sEye’s
ViewView

Light’sLight’s
ViewView

Eye’s View with Eye’s View with
projectionprojection
of colorof color--codedcoded
mipmap levelsmipmap levels
from light:from light:
Blue = Blue =
magnificationmagnification
Red = minificationRed = minification

Light’s View withLight’s View with
rere--projectionprojection
of above imageof above image
from the eyefrom the eye

67

Interpretation of the Four Images
of the Dueling Frusta Case

Eye’sEye’s
ViewView

Light’sLight’s
ViewView

Region that is smallest in Region that is smallest in
the light’s view is a region the light’s view is a region
that is very large in the that is very large in the
eye’s view. This implies eye’s view. This implies
that it would require a very that it would require a very
highhigh--resolution shadow resolution shadow
map to avoid obvious map to avoid obvious
blocky shadow edge blocky shadow edge
artifacts.artifacts.

68

Example of Blocky Shadow Edge
Artifacts in Dueling Frusta Situations

Light position Light position
out here pointing out here pointing
towards the towards the
viewer.viewer.

Blocky Blocky
shadow edge shadow edge
artifacts.artifacts.

Notice that Notice that
shadow shadow
edge is edge is
well well
defined in defined in
the the
distance.distance.

69

Good Situation, Close to the Miner’s
Lamp

Eye’sEye’s
ViewView

Light’sLight’s
ViewView

Very Very
similar similar
viewsviews

Note how the colorNote how the color--
coded images share coded images share
similar pattern and similar pattern and
the coloration is the coloration is
uniform. Implies uniform. Implies
single depth map single depth map
resolution would resolution would
work well for most of work well for most of
the scene.the scene.

Ghosting is Ghosting is
where projection where projection
would be in would be in
shadow.shadow.

70

More Examples

• Smooth surfaces with object self-shadowing

Note object selfNote object self--shadowingshadowing

71

More Examples

• Complex objects all shadow

72

More Examples

• Even the floor casts shadow

Note shadow Note shadow
leakage due toleakage due to
infinitely thin infinitely thin
floorfloor

Could be fixed byCould be fixed by
giving floor giving floor
thicknessthickness

73

Combine with Projective Texturing
for Spotlight Shadows

• Use a spotlight-style projected texture to give
shadow maps a spotlight falloff

74

Simulate atmospheric effects suchSimulate atmospheric effects such
as suspended dustas suspended dust

1) Construct shadow map1) Construct shadow map

2)2) Draw scene with shadow mapDraw scene with shadow map

3)3) Modulate projected texture Modulate projected texture
imageimage
with projected shadow mapwith projected shadow map

4)4) Blend backBlend back--toto--front shadowedfront shadowed
slicing planes also modulatedslicing planes also modulated
by projected texture imageby projected texture image

• Shadows in a dusty room

Combining Shadows with
Atmospherics

Credit: Cass EverittCredit: Cass Everitt

75

Luxo Jr. in Real-time using
Shadow Mapping

• Steve Jobs at MacWorld Japan shows this on a Mac
with OpenGL using hardware shadow mapping

76

• Luxo Jr. has two animated lights and one overhead light
• Three shadow maps dynamically generated per frame

• Complex geometry (cords and lamp arms) all correctly
shadowed

• User controls the view,
shadowing just works

• Real-time Luxo Jr.
is technical triumph
for OpenGL

• Only available in OpenGL.

Luxo Jr. Demo Details

(Sorry, no demo. Images are from web cast video
of Apple’s MacWorld Japan announcement.)

77

Shadow Mapping
Source Code

• Find it on the NVIDIA web site
• The source code

• “shadowcast” in OpenGL example code
• Works on TNT, GeForce, Quadro, & GeForce3

using best available shadow mapping support
• And vendors that support

EXT_texture_env_combine
• NVIDIA OpenGL Extension Specifications

• documents EXT_texture_env_combine,
NV_register_combiners, SGIX_depth_texture, &
SGIX_shadow

• http://www.nvidia.com

78

Credits

• The inspiration for these ideas
• Wolfgang Heidrich, Max-Planck Institute for

Computer Science
• original dual-texture shadow mapping idea
• read his thesis High-quality Shading and

Lighting for Hardware-accelerated Rendering
• Michael McCool, University of Waterloo

• suggested idea for multi-digit shadow
comparisons

79

Conclusions

• Shadow mapping offers real-time shadowing effects
• Independent of scene complexity
• Very compatible with multi-texturing

• Does not mandate multi-pass as stenciled
shadow volumes do

• Ideal for shadows from spotlights
• Consumer hardware shadow map support here today

• GeForce3
• Dual-texturing technique supports legacy hardware

• Same basic technique used by Pixar to generate
shadows in their computer-generated movies

