Anisotropic Texture Filtering in OpenGL

Cass Everitt – NVIDIA Corporation

[image: image3.png]cass@nvidia.com
The GL_EXT_texture_filter_anisotropic extension provides a very simple, general mechanism for enabling anisotropic texture filtering in OpenGL. While it is an exceedingly easy extension to use, the issue it addresses bears some explanation. Figure 1 illustrates the improvement in image quality when using anisotropic filtering.

Background

Texture filtering is the process of sampling the texture function (represented by a texture image) at a pixel. Though it seems simple enough, this task is more complex than you might think. This is because the sampling frequency of the texture function in texture space (the resolution of the texture image) is generally quite different than its sampling frequency in the image plane. Since the spatial and texture coordinates of an object can vary independently, the pixel’s reconstruction filter (which is generally rectangular in image space) can have a wide variety of footprints in texture space. Core OpenGL concerns itself with only two cases:

· when the pixel’s footprint spans multiple texels (GL_TEXTURE_MIN_FILTER), and

· when the pixel’s footprint does not span multiple texels (GL_TEXTURE_MAG_FILTER).

Figures 2, 3, and 4 help illustrate these cases. On the left of these figures is the camera’s view of a textured quad with blocks of pixels highlighted by a white grid. On the right is a view of the footprint of those grid cells on texture space.* For the purposes of discussion, we consider each cell in the white grid to represent a single pixel (rather than the block of pixels that they actually are).

Figure 2 shows the unusual case where a pixel’s footprint is roughly the same as the texel spacing. This is not a special case in OpenGL – it is intended to reiterate that we are considering each grid cell in the view on the left to represent a single pixel.

[image: image4.png]Figure 3 shows minification. In this case, each pixel’s footprint covers many texels. Ideally the filtered color would be a weighted average of all the texels covered by the footprint, but the cost of computing the coverage and accessing each texel would make real-time rendering virtually impossible. Mipmaps help solve this problem by supplying pre-filtered, minified texture images. Starting with the base level, each mipmap image is half the size of the previous one, resulting in an “image pyramid”. At rasterization the special LOD parameter, λ, is used to determine which pre-filtered image(s) to fetch texels from. This approach makes texture filtering much more constant-time and has other advantages that make it conservative of memory bandwidth.

[image: image5.png]

[image: image6.png]As you might expect, magnification is just the opposite situation. Here the pixel’s footprint is smaller (often much smaller) than a texel spacing. Figure 4 illustrates this case. In OpenGL the only two options for magnification filter are GL_NEAREST and GL_LINEAR. GL_NEAREST returns the value of the nearest texel, and GL_LINEAR returns a weighted average of the four surrounding texels.

Anisotropy

[image: image7.png]The examples in the above figures were somewhat contrived. In practice, pixels do not have nice, square, axis-aligned footprints in texture space. Figure 4 illustrates a more common situation – including long, thin (anisotropic) footprints. The footprints of the top row of pixels in this figure span several vertical samples of the texture function, but only one horizontal sample! How should we filter in this case?

In OpenGL, the LOD parameter, λ, is calculated as
[image: image1.wmf][

]

)

,

(

log

2

y

x

r

l

=

, where
[image: image2.wmf])

,

(

y

x

r

is roughly the number of texels spanned on the long axis of the footprint. In the isotropic case, when the footprint is roughly as wide as it is long, this approach works well, but in the anisotropic case, when the footprint is longer than it is wide, simply picking an isotropically pre-filtered image is incorrect. A typical manifestation of this problem is that a textured polygon rotated nearly edge-on with respect to the image plane will be blurrier than it should be.

Anisotropic texture filtering, through whatever mechanism it is implemented, is the process of sampling a texture function with a reconstruction filter that is narrow and long in texture space.

Using GL_EXT_texture_filter_anisotropic
The OpenGL extension that enables anisotropic texture filtering is quite simple to use. It exposes a max_anisotropy texture parameter. The default max_anisotropy is 1.0, which is equivalent to isotropic filtering. The max_anisotropy parameter can be dialed up to the largest_supported_anisotropy. The GeForce family of NVIDIA products support anisotropies up to 2. The following code fragment illustrates setting max_anisotropy to the largest supported value.

Glfloat largest_supported_anisotropy;
glGetFloatv(GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &largest_supported_anisotropy);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, &largest_supported_anisotropy);

Sample Images and Source Code

The following images illustrate various texture filtering modes. Each image shows four views of the same scene. The left column uses a max_anisotropy of 1 (isotropic), and the right column uses a max_anisotropy of 2. The top row uses a minification filter of GL_LINEAR_MIPMAP_NEAREST, and the bottom row uses GL_LINEAR_MIPMAP_LINEAR. The images in the right column should look the best – particularly in the distance.

The images in this paper were captured from two demo programs available on the NVIDIA web site. The images in figures above were generated using show_footprint, and the images below were generated using filter_anisotropic. Both programs are available with full source code or as executables.

[image: image8.png]Please also note that these images are densely packed to conserve page space. They are best viewed in electronic form with a magnification of at least 400%.

Figure 2. Pixel footprint same size as texel.

Figure 3. Minification. Pixel footprint covers many texels.

Figure 5. Anisotropic footprints are very common.

Figure 4. Magnification. Pixel footprint does not span multiple texels.

Figure 1. Comparison of isotropic and anisotropic texture filtering.

* Note that texture space is illustrated with a magnification filter of GL_NEAREST. This should not be construed to mean that texels have rectangular area. Texels are zero-area point samples of the texture function.

[image: image9.png][image: image10.png]_1024931730.unknown

_1024929034.unknown

