
Shadow TechniquesShadow Techniques
Sim Dietrich

NVIDIA Corporation
sim.dietrich@nvidia.com

Lighting & Shadows

• The shadowing solution you choose can greatly
influence the engine decisions you make

• This talk will outline some of the more popular
shadow techniques and compare and contrast
them

Light or Shadow First?
• One very key observation that changes the way

realtime lighting is implemented is whether to :

• 1) Start with a lit scene and subtract or modulate
out light in shadowed areas

• 2) Start with a black scene and add in light
contributions for each light in the scene, except
where there is a shadow

• Most current engines do the 1st, but the 2nd is
what engines will be doing going forward

Shadows

• Most games today lay down gray textures or
polygons to indicate shadows. This breaks down
for > 1 light, and doesn’t produce correct colors

• An engine with > 1 light touching a pixel would do
better to just filter out lights based on shadow
occlusion

Shadows

• Many current engines compute something like
this :

• FB = DiffuseTex0 * (Light0 + Light1 + Light2…)

• They then indicate the pixel is in shadow with
respect to Light0 like so :

• FB *= 0.75

• Obviously this is wrong, because Lights 1 & 2 get
darkened too

Shadows

• The more correct way to go is like so :

• FB = DiffuseTex0 * (Light0 * Mask0 +
Light1 * Mask1 + Light2 * Mask2…)

• The Mask Values are
• 0 if in shadow with respect to that light
• 1 if in the light
• Some value in-between on a soft shadow edge

Another Problem with Shadows via
Darkening

• If your shadowing approach shadows after
lighting, you need to worry about shadow leakage

• Your shadows may extend through occluders and
incorrectly shadow areas that couldn’t be lit in
the first place

Example of Problem

Viewer

Shadow
Volume
Back Face

Shadow
Volume
Front Face

Occluders

In this case the Tree may be darkened
even though it may not have been lit

by the light to begin with

Render with Light, not Shadow

• The solution is to render with illumination for
each pixel, except where there is a shadow

• This avoids shadow leakage

• Also it allows for any # of lights to be rendered
with properly colored shadows

Adding Light to a Dark Framebuffer

• To accumulate each light’s contribution to the
scene, use additive alpha blending like

SRCCOLOR*ONE + DESTCOLOR*ONE
• To ensure that the scene is rendered correctly,

you have to clear the color buffer and set the Z
buffer first

• This is to prevent a nearby spotlight that overlaps
a distant occluded spotlight from adding in the
occluded spotlight’s color and intensity

Setting the Z Buffer
• The simplest way to set the Z buffer is to simply

render the entire scene with only black, or with
ambient lights and shadows
• Precalculated static shadow maps can be included

during this pass
• It may be faster, depending on geometric

complexity, to do Z by itself first, and then lay
down the rest of the scene with the Z test set to
D3DCMP_EQUAL

• One advantage of this architecture is that you get
the maximum Z occlusion benefit without sorting
your scene from front to back

Storing the Masks

• There are three main ways to apply the shadow
mask once it has been generated

• Use Alpha Test to throw away pixels that aren’t lit

• Use Stencil Test to throw away pixels that aren’t lit

• Use blending, either DestAlpha or texture blending
to zero out illumination terms that shouldn’t
contribute to the scene due to shadows

How to Generate Shadow Masks?
• The next question is how to generate the shadow

masks to begin with :

• Analytical Approaches
• Shadow Volumes
• Poly Projection

• Pixel-Based Approaches
• Render a Depth-Incorrect Soft Shadow
• Use Depth-Correct Shadow Maps
• ObjectID / Priority Buffers

• Hybrid Approaches

Analytical Shadows – Shadow
Volumes

• Two main ways to generate Shadow Volumes
analytically :
• Add new polys representing the volume extruded

away from the light
• Always works
• CPU intensive
• Can’t do in a vertex shader
• Requires CPU to perform animation

• Stretch existing “back facing” vertices away from
the light

• Cheaper, can be done in a vertex shader
• Like the “Motion Blur” Tiger Demo
• Only works for well-tessellated convex models

Extruding Objects For Shadow
Volumes

Original Object

Extruded Object

Analytical Shadows - Shadow
Volumes

• Once Shadow Volumes are computed, they are
rendered into the scene using the Stencil Buffer

• One way to render shadow volumes involves
updating Stencil depending on the depth test
passing or failing

• This particular technique avoids having to cap
your shadow volumes at the near clip plane if the
camera is inside the volume

• At the cost of doing each light’s shadow in its
own pass, and clearing stencil in between lights

Analytical Shadows - Shadow
Volumes

• For Each Light :
• Clear the Stencil to 0

• Render Front Faces of the shadow volume
incrementing stencil on Z pass

• Render Back Faces of the shadow volume
decrementing stencil on Z pass

• If the Resulting Stencil Value for a pixel != 0, then it
is in shadow

Analytical Shadows - Shadow
Volumes

• If the camera is inside one or more shadow
volumes, the algorithm changes

• You must clear the stencil not to 0, but to the # of
stencil front volume polygons the camera is
inside

• This compensates for the front facing volume
sections that will be clipped by the near clip plane

• We still need to clip the back faces of shadow
volumes to the far clip plane

Analytical Shadows – Shadow
Volumes

Viewer

Case 1 : Object in
the Shadow
Volume

Shadow
Volume
Back Face

Shadow
Volume
Front Face

Marks Z Fail Area

The Front face
makes Stencil 1,
the Back Face does
nothing

Occluder

Analytical Shadows – Shadow
Volumes

Viewer

Case 2 : Object in
Front of the
Shadow Volume

Shadow
Volume
Back Face

Shadow
Volume
Front Face

Marks Z Fail Area

There are two Z
fails, so Stencil is
ZeroOccluder

Analytical Shadows – Shadow
Volumes

Viewer

Case 3 : Object in
Back of the
Shadow Volume

Shadow
Volume
Back Face

Shadow
Volume
Front Face

Marks Z Fail Area

There are no Z
fails, so Stencil is
ZeroOccluder

Analytical Shadows – Shadow
Volumes

• Now that the stencil is marked, we can use the
Stencil test as our Light Occlusion Mask

• If Stencil == 0, Render Light to Frame Buffer

• If Stencil != 0, Don’t Render Light to Frame Buffer

Analytical Shadows – Shadow
Volumes

• Advantages :
• No aliasing problems

• Disadvantages :
• Usually requires CPU work on the geometry to

generate the silhouette
• Performance is bounded by geometric complexity of

shadow casters
• However, the stretching variation can be done on

the GPU if your meshes are well-tessellated and
have smooth normals

• Must use 32 bit Z (for stencil)
• Highly variable fill requirements

• Can slow down if the camera is near a shadow
volume

Analytical Shadows : Shadow Caster
Projections

• The other analytical approach is to actually
project each vertex of the shadow caster onto the
shadow receiver
• This requires generating shadow polygons on the

CPU
• One must clip them as necessary to correctly fall

over the receiving geometry
• This avoids shadows hanging over cliffs, etc.

• This requires either :
• Finding the minimal silhouette of the object

• No overlapping polygons allowed
• Or ensuring that double-hits don’t double darken

• This can be done by either using additive blending
with Destination Alpha or using Stencil operations

Analytical Shadows – Shadow Caster
Projections

• Advantages :
• No aliasing problems
• Fill requirements typically not as intense as shadow volumes,

because we are drawing flat triangles and not triangles
spanning a volume

• Disadvantages :
• Always requires CPU work on the geometry to generate the

silhouette and to clip to receiving geometry
• Performance is bounded by geometric complexity of shadow

casters AND shadow receivers
• Must either clip original geometry to match generated shadow

polygons, or draw the generated polys with Z bias
• If not doing minimal silhouette extraction on the CPU, one

must use 32 bit Z (for stencil) or 32 bit Color (for dest alpha)
to avoid double darkening

• Hard edged shadows
• Requires Z bias

Pixel – Based Shadows : Depth-
Incorrect Soft Shadows

• This technique involves a render-to-texture of the shadow
casters

• Clear the texture to white

• Render in the shadow casters in black
• When you draw the shadow receivers, project them onto

the shadow texture for the light masking term

• These are easy to make softer around the edges

• Use a low-res shadow texture

• Use bilinear filtering to soften the edges

• On multitexture hardware, take multiple jittered bilinear
samples to smooth out the edges even more

Pixel – Based Shadows : Depth-
Incorrect Soft Shadows

Pixel – Based Shadows : Depth-
Incorrect Soft Shadows

• The main problem with this approach is dealing with
the shadow casters themselves

• If you treat the shadow casters as receivers also, they
will be shadowed even if they are the closest thing to
the light

• If you don’t allow shadow casters to receive their own
shadow, then they don’t get self-shadowing

• So, their arm can’t shadow their chest

• This is OK for convex objects, but not for complex
characters

Pixel – Based Shadows : Depth-
Incorrect Soft Shadows

• Another problem with this approach is that it is difficult to
combine multiple shadow casters into the same render-to-
texture

• The reason is that the resulting texture is just black and
white, there is no distinguishing one object from another

• For this reason, you really need a separate shadow texture
for each pair of casters / receivers

• This technique, therefore, is often limited to project a soft
shadow of a character onto a terrain or floor

Pixel – Based Shadows : Depth-
Incorrect Soft Shadows

• Advantages :
• Simple
• Only have to render one object to a texture
• Soft edges, although they can be jaggy

• Disadvantages :
• Not a general solution
• Shadow casters don’t self shadow
• Doesn’t work for objects that are both shadow

casters and receivers

Pixel – Based Shadows : Shadow
Depth Buffers

• Instead of rendering black to a white texture to indicate the
presence or absence of a shadow caster, what if we had a
Shadow Depth Buffer instead?

• The idea is to identify the depth of the closest pixel to the
light

• This is accomplished via a render-to-texture operation

• If when rendering the scene we check to see if the current
pixel’s distance from the light is greater than the closest
pixel that we stored in the depth buffer.

• If so, the pixel is in shadow

Pixel – Based Shadows : Shadow
Depth Buffers

Pixel – Based Shadows : Shadow
Depth Buffers

• Rendering to the Shadow Depth Buffer
• Set up your view matrix to be the light’s “LookAt”

matrix
• Set up the projection matrix based on the light type

• For spotlights, use the penumbra angle for the FOV
• For directional lights, use an orthographic projection
• For point lights, use a cubemap

• And render once for each face with a 90 degree FOV

• Render your depth value into the texture
• As an Alpha or Color Value

• 0 means at the light plane
• FF means at the edge of the light’s range

Pixel – Based Shadows : Shadow
Depth Buffers

• Where do we get the value to write into the depth buffer?
• Typically this is a texgen operation, with the texture

coordinates corresponding to [0..1] along the Z axis of the
light’s view matrix

• Texture coordinate 0.0 corresponds to at the light plane,
and 1.0 would be at the edge of influence of the light

• The texture contains a ramp for the alpha or color value

• Alternately, we can use a vertex shader to compute the
distance from the light plane

• Watch out for clamping problems

Pixel – Based Shadows : Shadow
Depth Buffers

• Then when rendering your scene :
• For each object that crosses the light’s area of

influence
• Typically a bounding sphere or a frustum

• Calculate its depth value exactly as you did when
you created the shadow depth buffer

• Also project the pixel onto the shadow depth
buffer

• Subtract the Calculated Depth from the Projected
Depth

• If the result is 0, the pixel is lit
• If the result is positive, the pixel is in shadow

Pixel – Based Shadows : Shadow
Depth Buffers

• To handle point-lights properly, you need to
render to all 6 faces of a cubemap to get the
depth from each point

• However, planar depth won’t work as it does for
spotlights or directional lights

• It won’t work if each face of the cubemap
contained a depth buffer storing planar depth
from that face
• There is no way to dynamically change our depth

calculation on a per-pixel basis
• One would need a volume texture for this

Pixel – Based Shadows : Shadow
Depth Buffers

• But, although we can’t use planar depth, we can
use a function of spherical range or range
squared instead

• This way the shadow test can be consistent
between the depth generation during the
cubemap construction and the scene rendering

• Use 2 2D textures to compute a range function
such as 1 – D^2
• Where D = sqrt(x*x + y*y + z* z)

• This is the Attenuation Map technique again!
• Downside is the low precision : << 8 bits

Pixel – Based Shadows : Shadow
Depth Buffers

• Rendering 6 faces of a cubemap is not cheap, so
here are some tips for speeding it up :
• If the point light doesn’t move, take a snapshot of

the static geometry
• Then save off the 6 Z buffers and the 6 shadow depth

buffers that the static geometry represents
• Use these as the starting point when updating the

scene
• Render your dynamic characters and objects into

copies of these buffers, this saves most of the fill
requirements for keeping these updated

• If the point light moves, all bets are off
• You might try not updating some faces of the cube

each frame, but this could introduce artifacts

Pixel – Based Shadows : Shadow
Depth Buffers

• Advantages of this approach are :
• Supports object self-shadowing

• Since each pixel is treated individually, it is possible
for one part of an object to shadow another part
correctly

• Disadvantages :
• Typically done with only 8 bits of color or alpha

precision
• Not enough for complex scenes

• Suffers from aliasing problems
• When shadow testing, you won’t always project

exactly onto the same shadow buffer pixel, causing
a closer or farther depth value to be found instead

• Hard, jaggy edges

Pixel – Based Shadows : Shadow
Depth Buffers

• Some things to do to improve quality :

• When creating the Shadow Depth Buffer, maximize
precision by finding the nearest and farthest objects that
may be lit by the light

• Make the closest point on the closest object map to
texture coordinate 0.0

• Make the farthest point on the farthest object map to
texture coordinate 1.0

• “Bias” your Calculated depth value when you are
performing the shadow test

• Push your calculated depth value a bit towards the light
• This will reduce shadow aliasing artifacts

Pixel – Based Shadows : Object ID /
Priority Buffers

• Priority or ObjectID buffers are similar to Shadow
Depth buffers in that both are per-pixel
approaches

• ObjectID Buffers work by identifying each
“Object” in the light’s range and giving it a
unique numerical ID
• An Object is defined as something that can’t

shadow itself
• So, any convex object or piece of a convex object

will do

Pixel – Based Shadows : Object ID /
Priority Buffers

• Next each object in the light’s range has it’s ID
rendered to a texture
• After this step, the buffer contains the ID of the

closest object for each pixel

• Now we setup similarly to the depth buffer
technique
• Compare the ID of the object you are drawing to

the one looked up in the buffer
• If they are the same, the pixel is lit
• If they are different, that means there must be

some other object closer, so the pixel is in
shadow.

Pixel – Based Shadows : Object ID /
Priority Buffers

• Some HW supports generating a unique ID for
each polygon submitted

• This is more convenient, but doesn’t solve the
real issue
• Two adjacent coplanar polygons with different IDs

can still alias with each other

• The only solutions are :
• Use per-object ID’s instead of per-triangle
• Perform multiple jittered tests and only shadow if

all tests agree the pixel is in shadow

Pixel – Based Shadows : Object ID /
Priority Buffers

• ObjectID buffers have another advantage over
depth buffers – they work better with cubemaps
for point lights

• The “multiple projection” problem doesn’t occur
because ObjectID buffers don’t store depth, just
an ID

Pixel – Based Shadows : Object ID /
Priority Buffers

• Advantages of this Technique :
• Can support any light range with equal precision
• For convex objects, it works great
• Doesn’t suffer from 8 bit precision issues like the

depth buffer approach
• Works better for point lights

• Disadvantages of this Technique :
• Objects must be convex or they won’t self-shadow

• To handle this, you can break objects into smaller
convex pieces, each with their own ID

• Suffers from aliasing problems
• When shadow testing, you won’t always project

exactly onto the same shadow buffer pixel, causing
a different ID value to be found instead

• Hard, jaggy edges

Hybrid Approaches?

• There are two hybrid approaches that I am aware
of :

• Render To Texture / Shadow Volumes :

• ObjectID & Shadow Depth Buffers

Render To Texture / Shadow
Volumes

• Render an object to a texture, and then use that
texture to reconstruct the shadow volume

• But the HW stall required to do this would only be
a win for extremely complex shapes

• Introduces aliasing problems into the stencil
shadow technique

• What if part of the object is too small to show up in
the render-to-texture buffer but big enough to be
visible on screen?

ObjectID & Shadow Depth Buffers
• ObjectIDs are great because they work at any light range

at all – good for inter-object shadowing

• Shadow Depth Buffers are great because they support
self shadowing – good for intra-object shadowing

• We can combine the two to create a better and more
robust approach than either alone

• The basic idea is that the shadow depth buffer contains
both an ObjectID and a depth value for each pixel

• Each object has its own ID as before, but the
Shadow Depth buffer is actually computed
per-object, so self-shadowing precision is
maximized

ObjectID & Depth Buffer Texture

Red Vertical Axis – ObjectID from 0 to ff

Green Horizontal Axis – Ramp from 0 to ff

Blue Horizontal Axis – Ramp from 0 to ff repeated 8
times – limited by max size of texture

Blue represents the low 8 bits of depth.

Green distinguishes the high 3 bits that represent
the 8 wraps of blue.

ObjectID & Depth Buffer Shots
Shadow Buffer Mapped Object

Difference

ObjectID & Depth Buffers

• Conclusion – you really need to filter the results
of multiple samples, especially if using ObjectID

• With Depth Buffers only, you can give away some
low bits of precision to avoid this

Ways to Smooth Shadow Edges

• For analytical techniques
• Render multiple shadow volumes, increasing the

light contribution each time in dest alpha

• For pixel-techniques
• You can’t filter either Depth buffers or ObjectID

buffers
• Instead, do multiple jittered samples of the shadow

buffer and accumulate the percentage in shadow
• This can be done in a single pass on 4 texture

hardware

Other Shadow Ideas - EMBM

• Use EMBM for shadows
• Probably not the fastest method, but an interesting

exercise
• All depth-buffer shadow techniques are basically an

interated depth from the light subtracted from a projected
depth buffer lookup

• EMBM works by performing
• dU,dV = TextureLookup(U, V);
• dU *= Mat2x2
• dV *= Mat2x2
• U’ += dU
• V’ += dV
• FinalColor = TextureLookup(U` V`)

Other Shadow Ideas - EMBM

• If we make the Mat2x2 be :
[-1, 0]
[0, -1]

Then we get :
U’ -= dU
V’ -= dV

U’ can be our iterated depth value from the light
dU is the depth buffer sample
Essentially the ‘Bump map’ is really a shadow map

Other Shadow Ideas - EMBM

• The final texture lookup needs to encode what to
do for each result of
• Iterated Depth – LookedUpDepth

• Use CLAMP addressing mode, and make the left-
most texel white, and all others black

• This allows only the lit pixels through

• V’ can be used for another jittered lookup
• Make the result texture only shadow if both the U’

and V’ lookups agree

Other Shadow Ideas – 24 Bit ObjectID
Buffers

• We can use R, G and B for 24 bits of Object ID
• Simply subtract the known ObjectID Buffer’s

value from the rendered object’s ObjectID Value,
then perform a dot product to sum the results

• Force the dp3 to replicate into alpha
• sub r0, c0, t0 // Compare Known ObjectID

// to Object ID Buffer
• dp3 r0, c0, c1 // c1 contains 0, 1, 1, 1

• r0.rgba now holds either zero for a match, or non-
zero for in shadow

• Set alpha test to kill pixel if the it is non-zero

Questions…

?
Sim Dietrich

Sim.Dietrich@nvidia.com

www.nvidia.com/Developer.nsf

