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ABSTRACT 

 
This paper presents a Web-Based, Multi-Agent COTR System (MACS) which provides 
the users with a natural language interface.  MACS was designed to provide advice in the 
pre-award phase of a defense contract. The original version of MACS allowed the users 
to query using only a list of predetermined keywords using pull-down menus. This study 
has extended the capability of MACS by allowing the users to interface with the system 
using natural language. The paper presents the overview of natural language processing 
(NLP), the newly extended architecture of MACS, and the approaches used in developing 
a natural language capability.  
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1. INTRODUCTION 
 

Intelligent agents have successfully demonstrated their potential for solving a 

variety of complex problems and in turn have become a viable alternative for tackling 

many real problems [Shen and Norrie, 1999; Muscettola, Nayak, Williams, and Pell, 

1998].  As a result, the intelligent agent technique has drawn much attention from many 

academicians as well as practitioners.  Intelligent agents are software systems that 

perform tasks delegated by human users with some degree of autonomy and 

independence. A Multi-Agent System (MAS) consists of multiple, interacting agents, 

which share knowledge and tasks among themselves, and cooperate with each other to 

achieve the goals set by the human users.  The capabilities of a MAS come not only from 

the intelligence of each individual agent, but also from the emergent behavior of an entire 

agent community.  

One important aspect in MAS is the user interface, which is responsible for 

interacting with the users to receive instructions and to provide the results of its actions. 

In order to support and provide assistance to a user to interact with a MAS, a user agent, 

which is designed to interface with the users, often builds a user model by observing and 

monitoring the actions taken by the user.  The user agent can learn to improve its 

performance through receiving positive and negative feedback from the user [Maes, 

1994].  However, the user agents in a MAS have suffered from limited flexibility when 

interfacing with the users. The user agent often responds only to direct command 

manipulation, forcing users to memorize a set of commands and the proper sequence of 

issuing commands. A natural language interface with the user would eliminate the 

necessity to remember all commands and provide much flexibility in terms of user 
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interactions. Users can input a string of words or queries and the natural language 

processing agent can parse out possible commands from the natural statements. 

MACS (Multi-Agent COTR {Contracting Officer’s Technical Representative} 

System) was developed to provide advice in the pre-award phase of a contract    

[Liebowitz et al., 2000b].   The original version of MACS allowed the user to query using 

only a list of predetermined keywords from pull-down menus.  The user agent, after 

processing the query, broadcasts the query request to all specialty agents. The appropriate 

specialty agent will then provide the user agent with the requested information, and the 

user agent in turn provides that information to the user.   The inflexible user interface 

could cause problems for those users who do not know the right keywords. In order to 

increase the flexibility in terms of user interaction, this study integrates natural language 

processing into the current MACS architecture.  

The objective of this paper is to present a Web-Based, Multi-Agent COTR System 

(MACS) incorporating natural language processing. The next sections describe the 

background for MACS system and the overview of the natural language process. 

Followed is the detailed description on the NLP approach to MACS, including the 

building tool used for MACS − Open Agent Architecture (OAA), the architecture of 

MACS, and the NLP agent − the Definite Clause Grammar-Natural Language (DCG-NL). 

The paper then presents the conclusions and future research directions.  

 
2. BACKGROUND 
 

In the Acquisition 2005 Task Force Final Report, “Shaping the Civilian 

Acquisition Workforce of the Future,” [USD AT&L, 2000] it indicates that the 



 4 

Department of Defense (DOD) is facing a critical crisis that can dramatically affect the 

United States’ ability to provide war fighters with modern weapon systems needed to 

defend the national interest of the United States.  The report indicates that after 11 

consecutive years of downsizing, the DOD faces serious imbalances in the skills and 

experience of our highly talented and specialized civilian workforce.  Fifty percent will be 

eligible to retire by 2005, and in some occupations, half of the current employees will be 

gone by 2006.  Unless immediately addressed, this situation will leave many acquisition 

organizations without the talent, leadership, and diversity needed to succeed in the new 

century [USD AT&L, 2000].  

 
To help resolve this ensuing problem, various acquisition programs have been 

created to improve the state-of-the-art in acquisition research so that technology and 

business innovations can aid eventual human resource limitations in the acquisition field.  

One such program managed by the Naval Postgraduate School is the External Acquisition 

Research Program (EARP).   The External Acquisition Research Program (EARP) has 

been established and funded to promote advances in basic and applied research as related 

to US defense acquisition, and further build and nurture the community of researchers 

working in this area.  The current EARP funded projects address: 

 
• A Web-Based, Multi-Agent COTR System (MACS) incorporating learning 

and natural language processing; 
• A Web-Enabled Automated Acquisition Design 
• Models and Tools for Acquisition Knowledge Management 
• Development of a Methodology for Redesigning Acquisition Processes Based 

on “Information Load Analysis” 
• Software Product Line Architectures with a Research Infrastructure for 

Software Systems Acquisition 
• Contents Management Issues in Business-in-Business Procurement 
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• Acquisition Reform in the Air Force Materiel Command 
• Design for Effective Horizontal Knowledge Transfer in Acquisition Related 

New Product Development Ventures 
• Identifying Structural Dimensions of Organizational Form for Acquisition 

Portals 
• Study of World Class Suppliers: Their Characteristics and Role in the 

Procurement Process 
• Synthetic Environments for Defense Acquisition Simulations 

 
 
 
 One of the projects that has been funded under EARP over the past two years is 

called MACS (Multi-Agent COTR {Contracting Officer’s Technical Representative} 

System) [Liebowitz et al., 2000b].  The purpose of MACS is to design and develop a 

web-based, multi-agent system that can provide advice in the pre-award phase of a 

contract.  MACS is originally developed from a rule-based expert system called CESA 

(COTR Expert System Aid) [Liebowitz, 2000a].  As such, MACS covers five main areas: 

− The type of contract desired; 
− What forms are needed in the procurement request (PR) package; 
− What type of synopsis is required; 
− How should incoming proposals be evaluated; 
− What is needed to go sole source (i.e., where only one vendor has the unique 

qualifications to accomplish the task). 
 

The eventual hope of MACS would be to replace part of the “Ask a Professor” 

module, contained within the Defense Acquisition Deskbook (DAD), whereby pre-award 

related questions in the five previous areas would be answered by agents in MACS 

instead of always sending the user queries to human experts via “Ask a Professor.”  If 

MACS did not have the knowledge to provide an appropriate response to the user’s 

question, then it could be forwarded to the appropriate human expert. 
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The first version of MACS, funded under EARP 99, had successfully 

demonstrated a web-based, multi-agent system in the five aforementioned specialty areas.  

MACS was developed through using Reticular Systems’ AgentBuilderTM, and applying 

Java servlets to facilitate the interaction between the user agent and AgentBuilderTM.  

This version of MACS used keyword matching to broadcast the user query to all five 

specialty agents for arriving at some conclusion to the user’s question.  An exact string of 

keywords had to be used to fire the appropriate rule(s) in the specialty agents.  This 

interface presented some severe constraints as it was awkward to use direct keyword 

matching instead of free-form text.  

 
This led to the focus of the EARP 2000 research effort.  To improve the user 

interactions with MACS, MACS now includes a limited natural language front-end, as 

well as a Bayesian learning approach [Rubenstein-Montano, et al, 2000] for targeting the 

best specialty agent who can respond to the user’s question.  Additionally, MACS has 

been encoded in OAA, developed by the Artificial Intelligence Laboratory of the Stanford 

Research Institute (SRI), for improved functionality.   

 
The rest of this paper will focus on the implementation of MACS in OAA and the 

natural language processing component. 

 
3. OVERVIEW OF NATURAL LANGUAGE PROCESSING  
 

Although Natural Language Processing (NLP) seems to have as many definitions 

as there are researchers, a basic, well-accepted definition is that NLP is a field in 

computer science and artificial intelligence (AI) that refers to any technique that 
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processes natural language. However, NLP extends into linguistics, cognitive science, 

psychology and philosophy. For instances, psychology of language and psycholinguistics 

address how people identify structure of sentences and learn meanings of words, 

philosophy studies the meaning of language, how words and sentences acquire it, and 

how words identify objects in the world, and linguistics looks at how words form phrases 

and sentences and what constrains possible meanings for a sentence [Allen, 1995]. There 

is even a broad study in the field of mathematics, growing simultaneously within 

disparate branches of mathematics such as group theory and probability-- called 

combinatorics on words -- which looks at letters as a finite sequence of symbols; the 

systematic study of words seems to have been going on since the turn of the 20th century 

and has grown into an independent theory which found substantial applications in 

computer science, automata theory and formal languages, and linguistics. [Lotharie, 

1997]. 

NLP history spans five decades, beginning with the research of noted MIT linguist 

Noam Chomsky in the 1950s and 1960s to current day work at the end of the 20th century. 

The   major branches of study are   Computer and Information Science and 

Computational Linguistics. The motivation behind research in NLP is to make computers 

capable of using natural language in order to increase our understanding of how human 

languages and minds work [Tennant, 1981].  The discipline of computer and information 

science treats NLP from a non-linguistic point of view, concentrating more on algorithm 

development, data structures, databases, knowledge representation and reasoning, 

machine learning, computation and statistical methods.  A linguistically-motivated 

discipline, Computational Linguistics, the study of computer systems for understanding 
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and generating natural language, is concerned with developing procedures for handling a 

useful range of natural language input [Grishman, 1986].   Each perspective has its 

strengths and weaknesses; recent trends seem to indicate a more symbiotic relationship in 

an attempt to overcome limitations inherent in each discipline.  The traditional 

applications of NLP are text and speech processing, but NLP is evident in expert systems, 

intelligent agents, and smart interfaces. 

3.1. NLP Approaches 
 
Various approaches have been used in NLP. The major categories are summarized below 
 
[Obermeier, 1989]:  
 

1. Linguistic:  This involves the process of determining the details of the structure 
of a sentence based on a grammar (syntax) and other features of the language 
itself, to include morphology, semantics, discourse, and pragmatics. 

 
2. Statistical:  This comprises all quantifiable approaches to automated language 

processing, to include probabilistic modeling, information theory and linear 
algebra.  This approach refers to non-symbolic, non-logical theories and 
application and looks at language and cognition as probabilistic phenomena. 

 
3. Hybrid:  This is a more recent development, which combines both linguistic and 

statistical approaches.  Each approach has its strength in certain areas of NLP and 
researchers have found that combining the best techniques proved most effective. 

 
4. AI:  This focuses on knowledge necessary to “understand” natural language. It 

uses “common sense” and world knowledge to try to develop models for language 
use and go beyond sentence processing, analyzing larger contexts.  Research is 
oriented around cognitive aspects that deal with the full spectrum of human 
language use and consequent action. 

 
5. Connectionist: This centers on neural networks, which was originally used in 

human brain research to form theories for human information processing based on 
the behavior of neurons and their connections. It uses a powerful metaphor based 
on biological mechanisms suggesting that information processing takes place by 
“spreading activation” of multiple processors, similar to the firing of neurons in 
the brain. Connections between processors are determined by attaching weights 
that either promote of inhibit activation of the processor. 
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3.2 NLP Applications 
 

The main applications of NLP are concentrated in the following areas: 
 
1. Information Extraction (IE): automatic extraction of information from text 

utilizing SGML tags to identify classes of words, including proper nouns and 
organization names, locations, time and numeric references.   

2. Information Retrieval (IR): automatic retrieval of relevant documents from a 
collection of documents in response to a user query. Also includes new field 
of cross-language IR (CLIR). 

3. Machine Translation: automatic translation of text in a source language into 
text in a target language (or languages). 

4. Text Summarization: automatic summarization of documents utilizing 
extraction of phrases and sentences. Systems that create abstract summaries 
(more akin to human summaries) vice extract summaries (pulling sentences 
out of existing documents) are not yet available commercially. 

5. Speech Synthesis: automatic rendering of speech into text, or text into 
speech, and from one source language to a target language (or languages) 
utilizing voice recognition techniques. 

6. NL generation: automatic generation of text. 
7. NL interfaces: front-end application of NLP techniques that simplifies and 

improves user communication. 
 
 

3.3. NLP Processes and Components 
 
A typical NLP system is composed of the following processes and components (in 

ascending order of difficulty): 
 
 PROCESS  COMPONENTS  PURPOSE 
 
          
 Phonological  Speech Recognizer  Identify speech sounds 
 
  Morphological  Morphological      Identify words, including 
    Analyzer   prefixes, suffixes and roots 
           
 Lexical   Lexicon, Dictionary  Analyze words at the 

Part of Speech Tagger            word level, retrieve 
    Named Entity Tagger  information from lexicon 
 
 Syntactic  Grammar, Parser  Identify syntactic structure 
        of input, label parts of speech 
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 Semantic  Domain-specific and  Identify meanings of input 
    Domain-independent  based on context within 
    Knowledge Base  sentence    
    Semantic/Case Grammar    
    Semantic Constraints 
    Synonym, Thesauri 
    Sense Disambiguation 
        Conceptual Net 
 
 
  Discourse  Discourse Parser  Identify meaning of input in  
    Sense Disambiguation  based on context with other 
    Anaphora Resolution  sentences 
    Coreference Resolution     
 
 Pragmatic  Language Generator  Generate grammatical 
    Language Models  and meaningful sentences 
    World Knowledge/Ontology  
 
 
3.4  Natural Language (NL) Querying  
 

Of the numerous large-scale Internet search engines, three major ones—Ask 

Jeeves, Northern Light, and Oingo, support NL querying.   The reason there are so few, in 

simple terms, is that true NL querying is difficult to perform well.  NLP is difficult when 

there is plenty of data to analyze from which to acquire information, much less if there is 

only one sentence, namely the query, to go on.   Most systems that boast NLP perform 

NLP on the lower levels of understanding and often this is for query interpretation only 

[Feldman, 1999].    Examples of current techniques include automatic words stemming, 

automatic identification of proper nouns and other classes of words, automatic phrase 

identification and automatic concept identification [Liddy, 1998].  Recent advances in 

utilizing linguistic techniques for information retrieval (IR) is in sharp contrast to the 

conventional view of IR which had ignored linguistically-motivated solutions    partly 
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because the   field has been populated by computer scientists and statisticians who are 

unfamiliar with language and linguistics.   

 
However, if the true purpose of NL querying is to allow users greater freedom in 

query formulation and the value of NLP is to transform ambiguous natural language 

queries and documents into unambiguous internal representation to retrieve relevant 

information, NLP techniques would have to be performed at the higher levels of the 

linguistic hierarchy, discourse and pragmatics, as well. NLP research has encountered 

much difficulty at the higher levels, and this is even without taking into consideration the 

issues unique to each application, such as IR, Machine Translation, or Text 

Summarization. Word sense disambiguation and polysemy (“bank” for money vs. “bank” 

of a river), anaphora and coreference resolution (“JULIE’S MOTHER went to the store. 

ELEANOR was a handsome woman. SHE bought some cheese and wine.”), spelling and 

pronunciation variations are but a few areas of linguistics that have hindered major 

advances in NLP.  If systems can get closer to “understanding” the meaning of a query or 

a document, the retrieval process would indeed be true “information” retrieval rather than 

“document” retrieval, that is, the user would get only relevant information and thus have 

a better chance to address the data overload problem. For true “understanding” to occur, 

however, NLP cannot be limited to queries; it must also occur in the entire textual or 

speech environment. 
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4. NLP METHODOLOGY TO MACS 
 
4.1. Alternatives to Incorporate NLP into MACS 
 
 There were three alternatives in incorporating the NLP capability into the current 

MACS. The first alternative was to develop a NLP agent using a Commercial Off-The-

Shelf (COTS) product. The code necessary to develop a NLP agent was already written so 

that this would be an efficient and effective way to implement the NLP. However, since 

Agent BuilderTM does not provide the NLP capabilities, the original version of MACS 

had to be migrated to the COTS chosen, requiring additional time and effort. The second 

alternative was to develop a NLP agent using the NLP components   available on the Web 

and then interface them with MACS in Agent BuilderTM. Similar to the first alternative, 

the advantages were that the code was already written and customizable. Components 

from a single source would have been preferable as they were usually created to work 

together for seamless integration.  Components from multiple sources would require 

intensive work to integrate them, causing a problem of interoperability.  However, most 

of these components were not compatible with each other and many were not built to 

work on a PC platform, a MACS requirement. The third alternative was to develop all of 

the NLP components necessary to build an NLP agent from scratch, including a parser, 

lexicon, language generator, etc. Although this option would have been the ideal since the 

NLP agent would be tailored specifically to the domain and user needs, resource 

limitations precluded this option. 

After evaluating the pros and cons of each option, we chose to use a publicly 

available software agent architecture called Open Agent Architecture (OAA), developed 

by the Artificial Intelligence Laboratory of the Stanford Research Institute (SRI).  The 
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OAA system includes an NLP agent as part of the package. This NLP agent supports the 

translation of English sentences into the Interagent Communication Language (ICL). This 

section describes in detail the OAA, the architecture of MACS developed with OAA, and 

the NLP agent in OAA using the Definite Clause Grammar-Natural Language (DCG-NL). 

 
4.2. Architecture of MACS 
 

The system architecture consists of nine agents — a User agent, a Facilitator 

agent, a NLP agent, a Machine Learning agent, and five specialty agents.  The specialty 

agents are encoded with domain knowledge about the five general areas of expertise 

required of AROs/COTRs, and the User agent interfaces with AROs/COTRs.  Interaction 

between AROs/COTRs and the system occurs through either keyword searches or natural 

language queries.  As shown in Figure 1, the MACS architecture implements a typical 

three-tiered brokered architecture.  The Facilitator agent coordinates agent activities and 

communicates with the agent(s) capable of responding to an incoming query. 
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Figure 1. Agent architecture and communication channels 

 

The User agent interacts with the user/ARO/COTR to welcome the user, asks 

what pre-award questions the user has, and serves as the interface between the 

user/ARO/COTR and the other agents in the system [Liebowitz et al., 2000b].  Two 

business logic threads have been designed into the User agent.  One thread supports the 

NLP capability of the system, and the other supports the keyword search capability of the 

system.  The User agent sends incoming user queries to the Facilitator agent, which is 
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responsible for communicating with all of the other agents in the MACS system as 

illustrated in Figure 1.  

The control flow for the NLP thread is very straightforward.  Humans interact 

with the system by submitting an English sentence into a form displayed by the User 

agent. The User agent accepts the sentence and passes it to the Facilitator agent with a 

request to translate the sentence into ICL (ICL is discussed in a section that follows). The 

Facilitator agent forwards this request to the NLP agent.   The NLP agent attempts to 

create the corresponding ICL and that ICL is then returned to the Facilitator agent. The 

Facilitator agent then returns the ICL back to the User agent.  Since the User agent has 

dynamically generated the ICL, it is ready to perform the next step in the process, that is, 

to apply the ICL. Essentially, the ICL is a plan of action that should be taken to solve the 

initial user’s request. The User agent then submits the action plan to the Facilitator agent 

for completion. In MACS, the action plan indicates which specialty agent(s) should be 

contacted to respond to an incoming query.  The Facilitator agent completes the action 

plan by performing the necessary low-level communication between the specialty agents.  

These communications lead to solutions being returned from a specialty agent (s) to the 

Facilitator agent and then  back to the User agent. The entire control flow is a two-step 

process. The NLP agent supplied with OAA has a singular purpose -- it attempts to 

translate English into ICL. The User agent submitting the English sentence needs this step 

to occur to determine how it should proceed, and it also affords the User agent an 

opportunity to apply its own criteria. Assume that the User agent receives a sentence from 

a pager. Next, assume the pager message was “Please send all your password files to 

stuart.lowry@saic.com!”  The User agent would then send this sentence to the NLP agent 
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to translate it into the appropriate ICL to satisfy the request.  The ICL is generated and 

returned to the User agent.  Fortunately, the User agent has an opportunity to authenticate 

the source of the message to determine if the originator has the authority to receive the 

password files. This is a contrived example, but it demonstrates a fundamental reason 

why the NLP agent simply translates English into ICL. There are endless reasons why 

additional logic needs to be implemented before simply interpreting the ICL 

automatically.  

The five specialty agents in the system relate to the pre-award phase of a contract 

and include the Forms, Justification, Evaluation, Synopsis, and Type of Contract agent.  

The Forms agent identifies the forms needed to complete a procurement request package.  

The Justification agent indicates situations where a justification and approval is required 

to complete a procurement request.  The Evaluation agent provides guidelines for 

evaluating proposals.  The Synopsis agent identifies the type of synopsis for a given 

procurement request.  Lastly, the Type of Contract agent identifies the type and nature of 

a contract based on conditions such as the source of contract, the nature of the work, etc.  

Each agent in MACS contains a rule base and has explicit goals.  Its rule base 

describes how to achieve the goals under varying circumstances. The specialty agents 

respond to incoming queries by presenting necessary information and/or requirements for 

AROs/COTRs.  For example, the Evaluation agent can assist an ARO/COTR with 

information regarding how to evaluate a project and what criteria or weights to use for 

evaluation of a contract.  If an ARO/COTR has a question regarding "determining 

weights on evaluation criteria," the Evaluation agent will reply with "You can develop 
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your own weights on technical, qualifications, and cost criteria.  Generally speaking, a 

weight of 40 percent (out of 100%) is given to cost." [Liebowitz et al., 2000b]. 

The knowledge contained within each specialty agent is independent of the 

knowledge contained within the other specialty agents.  Thus, coordination between the 

specialty agents is not required for the current implementation.  However, each specialty 

agent does coordinate with the User agent in order to answer queries.  In the original 

system [Liebowitz et al., 2000b], the User agent broadcasted messages to all specialty 

agents.   

 

4.2. Open Agent Architecture 
 

As mentioned earlier, MACS has been implemented using the Open Agent 

Architecture (OAA), which is supported by the Artificial Intelligence Lab at the Stanford 

Research Institute.  There are many facets of the OAA that have been exploited in the 

MACS system.     

The Facilitator agent functions as part of MACS, but it is a specialized server 

agent that is part of OAA, and it performs many basic functions.  The Facilitator agent 

has the ability to route messages, manage data, fire registered triggers, as well as accept 

incoming messages requests.  The Facilitator agent sends incoming messages to the 

appropriate specialty agent, and the specialty agent responses are then relayed back to the 

requesting agent (the User Agent in the case of MACS).   

A process called unification evaluates incoming messages.  Unification is a 

powerful mechanism for determining where the incoming query should be forwarded.  

For instance, the Contracts agent publishes strings such as “contract(Query,Flag,Result)” 
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where the arguments that start with an uppercase letter indicate variables.  If a request is 

received in the form “contracts(‘$25,000’,’sole source’,X)” it will be routed to the 

contracts agent.  The implementation of the MACS system in OAA allows for message 

brokering.  That is, the Facilitator agent automatically routes incoming queries to specific 

specialty agents based on the "solvables" each specialty agent registers with it.  

 Furthermore, the rules for MACS have been encoded as XML documents.  The 

XML encoding of the rules offers a flexible means for rule modification that was not 

possible in the original version of MACS [Liebowitz et al., 2000b].  Each specialty agent 

loads the XML document as its rule base.  The rule base is used to compare against 

incoming queries to determine if a rule is true or false.  The XML rule bases are simply 

ASCII documents that are served up by a web server.  A series of web forms have been 

designed for modification of the rule bases and general system maintenance. A 

representative rule is illustrated in Table 1. 

Table 1:  A Sample Rule of Evaluation Agent 
<rule name="57"> 
<description> 
   This is rule 57 from the "Evaluation" specialty agent.  
</description> 
<condition> 
<and> 
     <clause>competitive solicitation</clause>  
     <clause>evaluation criteria</clause> 
</and> 
</condition> 
<answer> 
Use such evaluation criteria as: technical understanding of the requirement (technical approach), 
management of the company, demonstrated expertise and capability in the areas called for in solicitation, 
facilities and equipment and cost 
</answer> 
</rule> 
 

Rule 57 from the Evaluation Agent 
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 As the figure illustrates, the rules have two sections. The condition section 

contains the clauses that need to be met for the answer to be true. The clauses contained 

within the condition section map onto a keyword selection user interface that represents 

the previous work completed on MACS. Notice that the rules contain Boolean sections 

within them. These Boolean conditions are easily possible when the user chooses 

supplied phases as in the first version of MACS. The phrases were selected from pull 

down menus. This meant that when the combination of user-supplied phrases matched the 

Boolean conditions within the rule, the rule “fired”. The natural language support in 

MACS utilizes the content of the rule conditions by performing information retrieval with 

the terms generated by the NLP agent. It is not reasonable to assume that a human could 

construct a sentence that would contain all conditions of the rule. In fact it is not 

reasonable to assume that a human would submit a sentence that contained a single word 

in each of the conditions. Therefore, a fuzzier matching technique was implemented for 

NLP support. The procedure is better explained in a section that follows. 

 

4.4  Natural Language Processing (NLP) Agent—the DCG-NL  

The Definite Clause Grammar-Natural Language (DCG-NL) is the NLP agent in 

OAA that was designed to parse incoming natural language queries.    Through the use of 

a logic-based grammar called Definite Clause Grammar [Pereira and Warren, 1980], the 

DCG-NL translates incoming English queries into expressions using an agent 

communication language used in OAA, called Interagent Communication Language 

(ICL). 
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ICL is a logic-based declarative language that expresses high-level, complex tasks 

and natural language expressions.  SRI chose a logic-based language because it was 

important that the language the agents spoke could represent and easily translate back and 

forth to human language [The Open Agent ArchitectureTM , 2000].  According to one of 

the creators of OAA, the motivation for including a natural language capability to OAA 

was because natural language fits very well into the delegated computing model that is 

the goal of OAA:  a user wants to be able to task a community of agents by specifying 

WHAT they want done, not WHO should do the task of HOW exactly it should be done.  

As new agents join the community, what the user can say and do should dynamically 

expand accordingly.  Agents who don't know about each other in advance should be able 

to cooperate and work together under the context of a natural language task.  Each agent, 

when it defines its capabilities to the community, should also be responsible for bringing 

the natural language words (and sometimes grammar rules) that are appropriate for the 

agent. To this end, ICL expressions were developed using a logic-based, Prolog-like 

language because SRI wanted to build into OAA some support for natural language from 

the beginning and most NL parsers usually create a logic-based "logical form"' to 

represent the meaning of a sentence or query [The Open Agent ArchitectureTM , 2000].   

 

4.4.1 Definite Clause Grammar and PROLOG 

The Definite Clause Grammar (DCG) is a type of grammar formalism that is 

expressed as a series of facts and rules.  This formalism is well-suited to describing a 

wide range of syntactic constructions [Matthews, 1998].   Grammar rules in the DCG-NL   

are expressed as predicates in which the use of arguments allows information to be passed 
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between them, much like the syntax of the PROLOG programming language, which is 

based on unification of arguments.  This formalism is essentially independent of 

PROLOG, however, and it can be written in any programming language that permits 

unification of arguments.   These operations are fundamental in a PROLOG interpreter, 

which means that DCGs are most easily implemented in Prolog [Gal et al, 1991].   

 

Such a DCG-NL offers important benefits.  First, it allows for dynamically adding 

words and grammars.   As new agents come into the community, they can add new 

vocabulary items and grammars. Second, the procedure to dynamically add words and 

grammars is very simple. We simply specify to which lexical category the word belongs 

among the nine currently available ones. Third, it comes with a built-in mechanism which 

tries to "guess" unknown words such as proper nouns, and also is equipped with an 

extensive “find” grammar to handle several different ways to "find” an object, such as 

“Find X”,  “Get me more information on X” or “I’m interested in knowing more about X” 

[The Open Agent ArchitectureTM , 2000]. 

  

However, the DCG-NL also suffers from limitations.  First, it only “recognizes” 

simple word definitions based on what is given and does not really "know" or 

“understand” the meaning of words. Second, it is not robust.  It only handles syntactically 

well-formed sentences.  Third, it recognizes a very limited number of sentence types 

because the grammar reflects SRI’s original purpose to retrieve information based on very 

simple sentence structures.  For example, it can handle sentences such as “Who is the 

manager of Adam?” and “What is the weather in Chicago?”, but not “Who was the 10th 
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President of the United States?” or “How long does it take to circumnavigate the world if 

flying on an air balloon with 3 people with a total weight of 400 pounds?”  

  

4.4.2 Vocabularies 

A list of vocabulary items must be registered with each agent so that the DCG-NL 

can recognize them as it parses queries.  In MACS, there are 5 vocabulary lists specific to 

each specialty (Forms, Types of Contract, Evaluation, Synopsis and Justification) plus 

one list that contains terms common to all domains. The terms are added using the 

following OAA syntax:  oaa_AddData(vocabulary(Type, Definition), []) where the Type 

is the linguistic category and Definition is the word. For example, to add the words “sole 

source”, “major” and “synopsize”: 

   
 
 
     oaa_AddData(vocabulary(adj, [‘sole source’, ‘sole source’]) 

oaa_AddData(vocabulary(noun, [‘procurement’, ‘procurement’])

 oaa_AddData(vocabulary(inf_verb[‘use’, ‘use’]) 

Similarly, to remove vocabulary items, the following syntax is used:  

      oaa_RemoveData (vocabulary(Type, Definition), []) 
 

A partial list of vocabulary items added to each specialty agent is shown in Table 2. 

Table 2 : A Sample List of Vocabulary Items Added 
 
Specialty Agent  Vocabularies  

CONTRACTS contract, contracts, contract 
types, contract vehicle 

NOUN 

EVALUATION evaluation, evaluation 
weights, evaluation 
procedures 

NOUN 
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FORMS form, forms NOUN 
JUSTIFICATION justification, justify NOUN, VERB 
SYNOPSIS synopsis, synopsis type, 

synopsize 
NOUN, VERB 

COMMON TO ALL 
AGENTS 

procurement, solicitations, 
purchases, award, 
unsolicited, explicit, R&D, 
need, use, complete, fill out 

NOUN, ADJECTIVE, 
VERB 

 

    The DCG-NL leverages the “trigger” capability of the OAA.  When the DCG-NL 

starts up, it notifies the Facilitator agent that it would like to be told whenever any agent 

in the community adds data to the system that unifies with the ICL pattern    

“oaa_AddData(vocabulary(X,[]))”. As mentioned earlier, each agent uses the 

oaa_AddData()  mechanism to extend the NLP capability.  The oaa_addData() method 

does not indicate anything other than a statement of fact.  Each specialty agent is simply 

announcing to the system the vocabulary that is relevant to its capability.  The Facilitator 

agent detects that this fact should be forwarded to the DCG-NL.  The forwarded message 

contains the appropriate amount of information that the DCG-NL requires to construct 

subsequent ICL expressions.  The message includes an Agent Identifier, the “solvable” 

within the particular agent, and the actual content of the “linguistic” fact.  When the Type 

of Contract agent submits the fact: 

 oaa_AddData(vocabulary(‘noun’,[‘contract vehicle’,’contract vehicle’])) 
 
the DCG-NL will remember that the Type of Contract agent has a “solvable” called 

“Contract” that is interested in NL queries containing the phrase “contract vehicle”.  This 

information is then used to parse the NL queries.   

 By abstracting the NLP capability in the agent community by implementing the 

capability through the use of triggers, the OAA architecture is well suited to allow for 
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multiple NLP agents. The MACS system can easily “plug” in new/competing natural 

language processing agents.  As new, and improved NLP agents are developed, older less 

robust NLP agents can be discarded. 

 Additionally, as new agents join the community and register their vocabulary, the  

capabilities of the DCG-NL increase proportionally.  Likewise, when agents disconnect 

from the system, the Facilitator agent will route the appropriate message to the DCG-NL 

agent. The DCG-NL updates its internal tables; this shrinks the NLP capabilities of the 

community. This dynamic nature of the DCG-NL is the model that all OAA agents strive 

to implement.  It demonstrates the dynamic nature of the OAA framework.  

 

4.4.3 User Queries 

Twenty-three sample queries were submitted to the DCG-NL. As indicated in 

Section 4.4.1(DCG and Prolog), the DCG-NL has a limited grammar.  Because the 

grammatical structures of the queries were more complex than the parser was built for, 

the 23 queries were modified to fit the simple grammar, as shown in Table 3.  Although 

every attempt was made to maintain the original form of the queries, this was only 

possible in one instance. A query was repetitively submitted after each analysis of the 

parsed output (an error message or a partial parse), until a full parse was obtained. Only 

then was the query considered acceptable to the DCG-NL. 
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Table 3: Sample Queries 

 

Original Queries Modified Queries 

“Do I have to synopsize if dealing with an 
8A firm?” 

“Do I synopsize an 8A firm?” 

“What do I need to know about 
procurement forms for ADP actions?” 

 “Show me more information on  
  procurement forms for ADP actions.” 

“What needs to be evaluated when an 
unsolicited proposal serves as a basis for a 
sole source award?” 

“What evaluation is for an unsolicited 
  proposal for a sole source award?” 

 

4.4.3 Parsed Output 

When queries are entered to MACS, the DCG-NL attempts to parse the queries 

into chunk of words according to its grammar.  When it encounters a query it cannot 

handle, an error message "Parse Failed" is returned.  This message is returned only when 

the entire sentence cannot be parsed.  There are cases where the query is partially parsed. 

The parsed output takes the form of an ICL expression.  ICL expressions are 

internal OAA representations of the natural language query that the agents can act upon.  

Each parsed word or phrase must be registered in the vocabulary of the appropriate 

agent.  The name of each agent corresponds to the functor or a term that represents a 

particular function; for MACS, the functors are “Forms”, “Justification”, “Types of 

Contract”, “Synopsis”, and “Evaluation”.  In cases where there may be multiple 

expressions synonymous to the functor, an alias was created so that expressions could be 

resolved to one functor. For example, for the Evaluation agent, “evaluation” is the 

function, so the functor is the word "evaluation".  Phrases such as "evaluation weights" 

and "evaluation criteria" were aliased to "evaluation" so that any ICL expression with the 
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functor “evaluation” will be sent to the Evaluation agent.  There also are nouns, 

adjectives, and verbs that are used by all agents.  These words, along with their lexical 

categories, are combined in one list called "Common".  Each word is XML-tagged with 

its appropriate part of speech.  This allows the DCG-NL, powered by the linguistic 

content of its grammar, to recognize the lexical information so that it can effectively parse 

the query. Examples of parsed outputs are listed in Table 4. 

Table 4:  Examples of Parsed Outputs 
 
forms('capital equipment',['major procurement'],) 
 
wh(var(forms([]),go([in(some('PR package'([for(some(procurement(['capital equipment’, 
      major])))]))),subject(var()])) 
 
contract(arrangement('labor hour'),[]) 
 
evaluation(proposal([unsolicited,for(award('sole source'))]),[]) 
 
synopsis('I',procurement(['ADP',under(count(50000,dollars))]),[on(schedule('GSA'))]) 
 
 

4.5 INFORMATION RETRIEVAL 

 The output of the DCG-NL is only the first step to process the query submitted by 

the MACS users.  The parsed output must now serve as input to retrieve information, that 

is, it must be used to select the right specialty agent to “fire” a rule(s) to answer the NL 

query.  The ultimate goal of MACS is to provide users with information related to 

defense acquisition, which is stored in a knowledge base in the form of rules.  As 

mentioned earlier, MACS has five specialty agents whose existence is solely to return 

relevant textual information to contract and acquisition personnel based on the query 

submitted to it.  In many cases, queries are answered  by one agent. But in some cases 



 27 

more than one agent can possess relevant information.   

 

 The final process in MACS is classic information retrieval (IR).  IR deals with the 

representation, storage, organization of and access to information items [Baeza-Yates, 

1999].  The widely used IR techniques are Boolean [Verhoeff, Goffmann and Belzer, 

1961], vector [Salton and Lesk, 1968, Salton, 1971, Salton and Yang, 1973, Yu and 

Salton 1976], and probabilistic models [Robertson and Sparck Jones, 1976, Sparck Jones, 

1979].  The sophisticated models include alternative set theory models, such as fuzzy set 

[Radecki, 1976, 1977, 1979, 1981], and extended Boolean [Salton, Fox and Wu, 1983], 

the algebraic models, such as generalized vector space [Wong, Ziarko and Wong, 1985], 

latent semantic indexing [Furnas, Deerwester, Dumais, Landauer, Harshman, Streeter, 

and Lochbaum, 1988], and neural network [Kwok, 1995], and alternative probabilistic 

models, such as the Bayesian inference [Callan, 1996], and belief networks [Ribiero-Neto 

and Muntz, 1996]. Each exhibits unique strengths and weaknesses; the selection of a 

suitable model is dependent on the domain data set, available technical resources, and 

usage constraints, such as speed, storage, trade-off between recall and precision, and user 

requirements.  

 For MACS, we use a combination of basic Boolean, pattern matching, and fuzzy 

matching algorithm. This combination is suitable for our purposes, since the knowledge 

base, which is relatively small, is not indexed, and speed is not an issue at this juncture.  

The output of the DCG-NL   provides the keywords which, when located within the 

condition portions of the rules explicit in the knowledge base, triggers the appropriate 

agent or agents to retrieve relevant information and return it to the user. A stop-word list, 
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consisting of non-content words, such as articles, leading ‘Wh’-question words, 

pronouns, certain forms of verbs and modals, and portions of ICL expressions that can be 

ignored in the search process, is used to narrow the search space, resulting in efficiency.  

All extraneous non-alphanumeric symbols and punctuation in the parsed output, such 

as”()”, “[]”, “‘”, and “,” are ignored as well. 

 

 When the parsed output is sent by the Facilitator agent to an agent capable of 

handling the query, that agent will "fire a rule" from the knowledge base and return a 

relevant piece(s) of information to the user; that is, when the condition stipulated in the 

rule is met, the user is provided with the answer to his/her natural language query. In 

some cases, the DCG-NL   is able to parse sentences based on the internal grammar that 

SRI provided. In these cases, since the parse was not influenced by any of the specialty 

agents, the ICL does not contain any indicators that would suggest which specialty agent 

should receive the request. The User agent simply performs a broadcast and provides each 

agent an opportunity to try and solve the request. (A request is considered “solved” if an 

answer is returned. An answer is returned if any one or more rules fire within the 

specialty agent.) The retrieved information is not returned to the user in any particular 

order.  We do not use any mechanism to rank the retrieval results by relevance or 

importance.  

 The following is the process by which information was returned to the query 

“What are the major procurement forms for capital equipment?” 
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Off-Screen Snapped Text…  
 

Rule: 71 Need definitive design/performance specifications.  
 

Rule: 72 Need Statement of Work or description of services to be rendered.  
 

Rule: 62 Procurement request for lab (NRL) equipment only. (NDW-NRL 
4235/3431) Rev. 9/88 Yellow Form.  

 
Rule: 63 Procurement request for non-equipment only. (NDW-NRL 4235/3404) Rev. 
9/88 White Form.  

 
Rule: 64 Include a statement of the Procurement Request as to the initial value of 
government furnished equipment (GFM) to be modified.  

 
 

Since the functor is “forms”, this query is sent to the Forms agent, which then conducts a 

search for all of the content words, in this case “capital equipment”, “major 

procurement”. The Forms agent then matches these words to all applicable rules in the 

knowledge base.  For this example, the conditions for Rules 62, 63, 64, 70, 71, 72, 78, 89, 

92 contain are met so all information contained in those rules are returned.  The user will 

then determine which information satisfies the   information need. 

 For the query “What is the evaluation criteria for a competitive solicitation?”, 

the process is as follows: 
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Since the functor is “evaluation”, this query is sent to the Evaluation agent, which then 

conducts a search for all of the content words, in this case “competitive solicitation”. The 

agent then matches Rules 57-59.   

  

           In order to provide a detailed description of the information retrieval algorithm, it 

is necessary to identify the important aspects of the ICL statement. Consider the 

following ICL statement: 

 synopsis('I',procurement(['ADP',under(count(50000,dollars))]),[on(schedule('GSA'))]) 
 

The terms in this statement are ‘I’,’ADP’, 50000, dollars, ‘GSA’. Terms are those single 

words (or phrases if multiple words are enclosed in single quotes) which are contained 
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inside parentheses or brackets. The functors in this statement are “synopsis”, 

“procurement”, “under”, “count”, “on”, and “schedule”.  Functors are the single words 

(or phrases if multiple words are enclosed in single quotes) which precede open 

parenthesis. Single words do not need quotes unless they are literals that begin with an 

uppercase letter. (Uppercase letters normally indicate variables in the statement).   

 The information retrieval procedure begins in the User agent after it receives the 

ICL back from the Facilitator agent. The first step is to parse the ICL and reduce it to a 

list of terms and functors. The stop words are eliminated from the ICL. The list of 

functors is scanned. If the first functor is not one of the specialty agents, then the 

remaining functors are examined. Usually, the specialty agent functor occurs first.  

However, since the ICL actually contains some semantic significance, it is possible that 

the specialty agent functors occur deeper within the ICL.  Therefore, the information 

retrieval algorithm accommodates this situation by scanning the functors. If no specialty 

agent is identified, then every agent will be polled to see if they can respond to the query. 

This completes the User agent’s portion of the IR procedure.  The above ICL is flipped 

into the new ICL statement that will be submitted by the User agent to the Facilitator 

agent: 

  Oaa_Solve(synopsis([procurement,under,schedule],[ADP,50000,dollars,’GSA’], X) 
 
Notice that the functor “synopsis” was located which will route this query to the Synopsis 

agent.  The stop words were eliminated, and now the fuzzy lookup can begin.  The fuzzy 

lookup has been described in earlier sections. The Synopsis agent will receive this query. 

Since there are two argument lists (a list is indicated by the brackets), the Synopsis agent 

knows to apply the fuzzy lookup. The earlier version of MACS, which supports keywords 
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picked from a menu, expects only a single list argument. The technique is to extract the 

condition portion of each rule. The text within this section is searched using case 

insensitive, regular expressions. An implicit AND is applied. So, if each term and functor 

occurs in the condition portion of the rule, the rule is “fired”. 

We did not compare or evaluate the performance of the results of the NLP 

capability against the results of the older keyword matching version of MACS due to time 

constraints.  Upon cursory observation, it appears that the NLP version is returning more 

information than it should, some possibly irrelevant and some contradictory; in other 

words, there is higher recall (coverage) than precision (accuracy).  This is likely to be 

more a result of possible inconsistencies in the rule base than in the search algorithm, 

although the parsing process was clearly successful. For the current phase of study, we 

believe it is better to provide more information to the user than not enough. Additionally, 

MACS is using the text contained within the condition tags of the rules to perform the 

information retrieval. This text is the legacy rule condition of previous versions of 

MACS. It would be more appropriate to create an additional portion within the rule that 

would contain the text criterion for the natural language matching.  This is a trivial 

technical change. The information retrieval algorithm can easily consider a different 

portion of the rule. The difficulty is identifying the breadth of sample sentences that are 

supported by the DCG-NL, and inserting the appropriate terms into this new rule portion 

section.  This exercise is well suited by introducing a user feedback loop, and let the rules 

expand over time, with proper rule base change management. 
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5.  CONCLUSIONS AND FUTURE DIRECTIONS  

This study has applied Natural Language Processing (NLP) to a multi-agent 

system, MACS, which was constructed to assist the users in defense contracting. MACS 

is augmented with the natural language processing capability, now enabling the users to 

enter natural language queries to obtain the information regarding the pre-award 

contracts.  The Natural Language agent successfully parses the natural language queries 

and selects the specialty agent(s) to answer the user’s query by firing the rules in its 

knowledge base.   

Although this research contributes to the existing MAS literature by incorporating 

NLP, it is the first step toward providing a natural language interface for MAS.  The 

future directions of this research are to develop a more effective natural language 

interface by: 

Using a more robust parser: 
 
Currently, the DCG-NL has very limited parsing capabilities; in fact most of the NL 

queries had to be modified to fit the grammar rules it supports.  The use of a powerful 

parser, like GEMINI from SRI, will be adapted once it becomes available to improve the 

flexibility.   

Using a semantic component to add more linguistic information to disambiguate word 
senses:  

 
For any ambiguous queries, a semantically-motivated component, such as WordNet, a 

concept net, or an ontology, could help the NLP agent better identify the intended 

meaning or sense of the words in the query, resulting in a more accurate parse and thereby 

narrowing the subsequent search space during the retrieval process. 
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Using more linguistically-motivated search methods 
 
The linguistic information contained in the ICL expression resulting from the NLP agent 

should be exploited fully to improve the overall search effort.  This would give the 

retrieval component more information to base its search criteria in addition to the actual 

words visible in the queries. 

Reorganizing the knowledge-base with indexing  
 
Currently, the MACS knowledge base consists of flat files of rules.  Reorganizing this 

knowledge base by using an index, which is a data structure traditionally used in 

information retrieval, could increase retrieval efficiency.     

Using a mechanism to rank relevance  
 
It would greatly help the user if the retrieved information were ranked in order of 

relevance or importance. For instance, the information that the system thinks is most 

relevant or important in satisfying the user’s query will be the first one the user will see, 

with less relevant ones following it.  Most commercial Internet search engines employ 

this mechanism, showing the user a percentage of confidence. This would, however, 

require more sophisticated search methods, including statistical methods for classification 

and documents clustering.  

Incorporating user feedback  
 
Should the NLP agent need to “better recognize” the input query, a semantic component 

in the user interface could allow the user to choose the right sense or meaning of the 

query terms which would transform or expand the original query.    This additional 

information could help the NLP agent better parse the query.  
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Using information extraction techniques  
 
Tagging or annotating the content words of the input query with linguistic information 

could give the NLP agent  more information on which to make its parsing decisions. 

Preprocessing the knowledge base in such a way could give the retrieval component more 

salient information that could improve performance.  These XML or SGML tags would 

consists of syntactic categories such as <NOUN> or  <ADJ>, or unique domain-

dependent classification categories such as <FORM> or  <EVAL>.   

Building a user profile based on query history 
 
Using machine learning algorithms, a user profile could be created by compiling the 

user's past queries or by using the query histories of multiple users (like Amazon.com) as 

a way to predict what a user’s subsequent query might be. Then, when a particular user 

logs on to MACS, the system could anticipate the query, thereby putting a particular 

agent "on notice".   
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