
Paper AAS 99-366

THE NAVAL SPACE COMMAND
AUTOMATIC DIFFERENTIAL CORRECTION PROCESS

D. A. Danielson*

David Canright
Deborah N. Perini

Paul W. Schumacher, Jr.

The Naval Space Command maintains a database of orbital elements for the
objects in the space catalog. This report is a documentation of the software
which inputs new observations of a satellite and its old element set and outputs a
new element set. Topics covered include: mathematics of batch least squares
differential correction process, definition of fit span and passes, calculation of
residuals and partials, inclusion of historical data, solution to normal equations,
iterations and tolerances.

INTRODUCTION

The Naval Space Command maintains a database of element sets for roughly 9,000
Earth-orbiting objects, which is essentially the U.S. Space Command satellite catalog.
NAVSPACECOM receives about 270,000 observations per day and performs an average
of 18,000 element set updates per day. About 98.5% of the element sets are updated,
without human intervention, by computer software called AUTODC. The purpose of our
report is to elucidate the technical aspects of AUTODC for the astrodynamics
community.

MATHEMATICAL BACKGROUND

AUTODC uses a batch least squares differential correction process. This is an
iterative method which updates the orbital elements so that the propagated orbit fits the
observations in the least squares sense, i.e., the sum of the squares of the residuals is
minimized. In this section, we outline the mathematical steps in the classical method for a
batch least squares differential correction of an orbital element set; for further details, see
Vallado (Ref.1).
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(i) Pick an initial nominal state
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These elements will be updated with each of the following iterations until the differential
corrections are smaller than the prescribed tolerances.

(ii) Compute the values of the observed parameters Yc at N times corresponding to the
observations Yo (assume each observation set includes 6 numbers):

Ni

Y

Y

Y

Y

Y

Y

io

o

o

ic

c

c KMM ,1 where,,

6

1

6

1

=
















=
















=

(iii) Compute the residuals or “O-Cs” (Yo – Yc)i (observed minus calculated parameters).
These can be arranged to form the 6N×1 column matrix
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(iv) Calculate the partial derivatives
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at each time corresponding to the observations. Here (rI,rJ,rK) and (vI,vJ,vK) denote the
Cartesian coordinates of the position and velocity vectors. These can be arranged to form
the 6N×8 matrix
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(v) Form the normal equations:

AT W Ax = AT W b

Here W denotes a 6N×6N diagonal weighting matrix, and
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are the differential corrections. Note that AT W A is an 8×8 matrix, and that AT W b is an
8×1 matrix.

(vi) Solve the normal equations:

x = (AT W A)-1 AT W b

(vii) Update the elements:

Xnew = Xlast + x

(For the first iteration, Xlast is Xnominal.)

(viii) Apply tests to determine if iterations should continue. If so, return to step (ii).

PROGRAMMED PROCEDURE

Now we outline aspects of the differential correction process as implemented in the
NAVSPACECOM software.  The software has evolved from many years of experience
with the maintenance of satellite orbital elements where the algorithms must be able to
also handle atypical cases which arise in an operational environment. These can include
cases where there is insufficient or poorly distributed observation data over the orbit of
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the satellite, or cases where observations have been mistagged to the incorrect satellite.
The quality of the available observation data also affects how well the DC process can
overcome these limitations in the data. Some of the formulas and logic used in the
software were empirically derived based on experience with the satellite element set
correction process.

Documentation of these methods was initiated by Perini (Ref. 2).

Units

The AUTODC software internally uses canonical units. The Earth radius R⊕  = ER
and gravitational parameter µ⊕ are taken to be unity. One canonical time unit CTU is then
the time it takes a hypothetical satellite to travel one radian on its way around a circular
orbit of radius R⊕.

To relate these units to metric values, the Earth radius and gravitational parameter are
taken to be:

R⊕ = 6378.135 km,       µ⊕ = 398597.62579588 km3/sec2

The value for the canonical time unit is then derived from the formula

891778135942999.806
3

==
⊕

⊕

µ
R

CTU sec

Time is measured in canonical time units from 12:00 UTC on January 1, 2000. The
NAVSPACECOM inertial coordinate system is also associated with this date.

Leap seconds are not accounted for in the conversion between external (wall clock)
time and internal (canonical) time units. If a leap second occurs within the fit span, the
software adds/subtracts the time tick to the appropriate observation times.

The software uses radians for angle values.

Observation Types

The collection of tracking assets available to U.S. Space Command for tracking
satellites non-cooperatively is known as the Space Surveillance Network (SSN). This
"system of systems" presently consists of several dozen sensors, including mechanical
radars, phased array radars, optical telescopes, passive radio direction-finding equipment,
and the Naval Space Surveillance System. The latter system is commonly known as the
Fence, is operated by Naval Space Command, and supplies unique data types discussed
below. At present, AUTODC can handle the following combinations of data types from
the SSN:
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            Azimuth and elevation angles
Right ascension and declination angles
Azimuth, elevation, and range
Earth-fixed Greenwich (EFG) Cartesian position (X,Y,Z)
Azimuth, elevation, range, plus EFG sensor location

The first three data types come from sensors whose positions are in the database. The last
data type is specifically intended for mobile sensors, such as satellite-based observing
platforms. Some sensors report right ascension and declination, but these angles are
transformed into apparent azimuth and elevation for AUTODC processing. Some sensors
can also report rates of change of azimuth, elevation, or range, but currently rate data are
not used for updating cataloged orbits.

The NAVSPACECOM Fence provides, via specialized real-time interferometric
processing, a pair of direction cosines of the apparent line of sight of a satellite as it
passes through the Fence beam. The cosines are reckoned along nominal "East-West" and
"North-South" axes at each of six receiver stations located along a great-circle arc across
the southern United States. These local observation axes differ from the true geographical
directions by a single rotation in azimuth, different for each station. By triangulating the
apparent lines of sight from several stations, it is possible to produce an EFG Cartesian
position for each satellite pass. However, this triangulated (X,Y,Z) data type is prone to
systematic errors, and NAVSPACECOM uses only the single-station direction cosines for
updating the satellite catalog. The real-time reduction of raw Fence data also provides
estimates of the direction cosine rates, bistatic Doppler shift, and Doppler rate. The
Doppler shift is used to help associate observations with known orbits.

Element Database

Several different versions of each element set are kept on the NAVSPACECOM
database, for comparison purposes:

initial = first element set cataloged at NAVSPACECOM

operational = most recently updated NAVSPACECOM element set for the object

SSC = most recent element set received from U.S. Space Command for the
object (SSC was acronym for Space Surveillance Center)

field = most recent element set provided to the Space Surveillance Network
sensors

The operational element set update is initiated based on the arrival of new observation
data into the system.  If the new observation residuals calculated with the current
operational element set exceed pre-established tolerances, an update of the element set is
initiated.  Or, if it has been more than 23 hours since the last update, an update is
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initiated.  However, if no data is received for a satellite, an automatic update of the
element set is not initiated.

The field element set update may only be initiated when NAVSPACECOM is
activated for providing element sets to the sensors. Then, each field set update is initiated
when the position difference with the orbit determined by the current operational set is
greater than a tolerance, usually 12 km.

An element set for each orbiting object contains six classical elements augmented by
two terms used to account for atmospheric drag:
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The second decay term is normally zero and is not corrected. Epoch is the time of the
most recent observation in the last DC.

These elements are currently propagated by the subroutine PPT3. The older
subroutine PPT2 and the improved subroutine PPT3 have been documented by Solomon
(Ref. 3) and Schumacher and Glover (Refs. 4-5).

Fit Span and Passes

The "fit span" is the maximum length of time over which the observations are taken
for a full-batch differential correction. If the satellite period is greater than or equal to 600
minutes, fit span is based on period P = 2π /n; otherwise, fit span is based on rate of

change of period ( )nnP && 22π−= :

                   Period Fit Span
             P ≥ 800 minutes 30 days
  600 ≤ P < 800 minutes 15 days
            P < 600 minutes:

P& ≥ –0.0005 minutes/day 10 days
    –0.001 ≤ P& < –0.0005 minutes/day 7 days

 –0.01 ≤ P& < –0.001 minutes/day 5 days
P& < –0.01 minutes/day 3 days
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The AUTODC software may try to expand this fit span (up to a maximum of 30 days)
so as to include more observations. Note also that fit span, and many other AUTODC
parameters, may alternatively be selectively adjusted by satellite rather than be set
automatically by the software.

The element set is updated only if there has been at least one observation since the
last DC attempt and there are more than 5 passes in the fit span. Here a "pass" is defined
as:

   a. The set of direction cosine observations from 2 or more receiver sites when a satellite
passes through the fence beam.

   b. The set of observations provided by any other SSN sensor for one satellite track over
the sensor. In this case, the first observation in the fit span is the first pass.  A new
observation is a pass only if the time since the last observation  is more than 10 minutes
or if the new observation is from a different sensor.

Tolerances

If the absolute value of any O-C residual is greater than a tolerance, the corresponding
single observation parameter is excluded from the iteration.

Currently the tolerances for the direction cosine, [azimuth, elevation, range], and
Earth-fixed [X, Y, Z]  O-Cs are all set to the same number.

The tolerances for Doppler and range-rate O-Cs currently are set to zero, which
effectively excludes the corresponding observations from the differential correction
process. The code for other types of rate O-Cs is not in AUTODC.

The initial tolerance is taken to be

TOL = 2 * INT[max(2a – 1, 1)] nautical miles

Here INT denotes real number truncation, and a is the mean semimajor axis in Earth
radii.  Some example values of the initial tolerance are as follows:

Period Semimajor Axis TOL TOL

120 minutes 1.264 ER 2 nm 3.707 km
225 minutes 1.921 ER 4 nm 7.413 km
720 minutes 4.172 ER 14 nm 25.95 km
1440 minutes 6.623 ER 24 nm 44.48 km

This value for the tolerance is changed in subsequent DCs, as explained later in this
report.
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Residuals

Direction cosine and angular residuals and partials are multiplied by the computed
range R; this scaling allows the use of a common tolerance with units of length for
residuals of all data types. In addition, scaling factors of 1/ )sin(elev  and )cos(elev , where
elev is elevation, are introduced in two residuals only; this decreases the importance of
low-level East-West cosine observations and amplifies azimuth measurements at zenith,
because O-Cs greater than the tolerance are excluded..

The differences between observed and calculated cosines are scaled as

( ) ( ) ( )
( ) ( ) ROC

elevROC

*ˆˆcosineSouth -North2

sin*ˆˆcosineWest -East1

NR

ER

⋅−=

⋅−=

where hats denote unit vectors. The Ê  and N̂ unit vectors lie in a plane tangent to the
local horizontal, and are reckoned along and normal to the great circle arc formed by the
receiver station locations.

The differences between observed and calculated azimuth and elevation are scaled as

( ) ( )[ ] ( )
( ) ( ) ( )( )[ ] RelevelevOC

elevROC

*cossinarctanelevation4

cos**ˆˆˆˆarctanazimuth3

−=

⋅⋅−= NRER

For [X, Y, Z] observation data, the O-Cs are just the differences between observed

and calculated positions, but expressed in the UVW coordinate frame, where Û  is the

direction from Earth center to satellite, V̂  is the transverse direction in the orbital plane,

and Ŵ  is normal to the orbit plane.

The calculated quantities are propagated to the observation times by the PPT3 theory.

Partials of Calculated Observations

The partials of the observed parameters with respect to position and velocity are
denoted in AUTODC by

( )vr,∂
∂= cY

VO

R times the partials of the direction cosines with respect to position r are
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Here the subscript j = 1, 2, 3 refers to one of the Cartesian components (may be Earth-
fixed or inertial coordinate frame).

R times the partials of azimuth and elevation observations with respect to r are
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where Ẑ  is the unit vertical vector, so sin(elev) = ZR ˆˆ ⋅ .

The partials of range with respect to r are

For [X, Y, Z] observations, the partials with respect to r are

( ) j
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U
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and similarly for V̂  and Ŵ .

Partials of Position

The partials of the osculating position and velocity with respect to the mean elements
at epoch are denoted in AUTODC by

( )
rnonsingulaX

PE
∂

∂= vr,

These partials are calculated with respect to the “nonsingular” elements at epoch
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This choice of partials implies that the differential corrections xnonsingular will be in terms
of nonsingular elements. The nonsingular elements, which are similar to the well-known
equinoctial elements, are well-defined for zero eccentricity or zero inclination orbits;
however, for i = π  they are ambiguous since Ω is undefined.

The PE partials are calculated from

( )
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Z

Z
ARBRPE

∂
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∂
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.

Here BR denotes the 6×6 matrix of partials of the osculating (r, v) with respect to the 6
osculating elements
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and AR denotes the 6×8 matrix of partials of the osculating elements Z with respect to the
8 epoch mean elements Xnonsingular. The AR partials are currently based on the older PPT2
orbital theory.

Weights and Biases

The diagonal entries of the weighting matrix W currently used in AUTODC are either
obtained from the database or set to a standard weight of 25×106.

Biases are loaded from the database and are currently set to zero for all sensors.
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Formation of Normal Equations

AUTODC accumulates the effect of each set of observations in the 8×8 matrices

Enew = Eold + PET * VOT * W * VO * PE

Gnew = Gold + PET * VOT * W * OC

(For the first set of observations, Eold and Gold are identically zero.) After iterating through
all observation sets, the end result is the normal equations in the form

E x = G

Sequential-Batch Differential Correction

The matrix ATWA from the previous DC is stored in the database and may be used in
the current DC to represent historical data. This provides an option of performing a
sequential-batch least squares differential correction with only the new observations
received since the last successful DC. The mathematical derivation of the basic equations
used in AUTODC is rather complicated, and significantly different from the form given
by Vallado, and so is summarized here.

The least-squares method can be applied to any linear system

A x ≈ b

where typically the m×n system has many more equations (m) than unknowns (n) and is
inconsistent. Because the range of the matrix R(A) (the column space) is the orthogonal
complement of the null space of the transpose N(AT), then multiplication of the equation
by the transpose always gives a consistent n×n system (though the solution may not be
unique, if the variables are correlated)

AT A x = AT b

This solution minimizes the residual r = b – A x by making it orthogonal to the column
space of A, so that AT r = AT (b – A x) = 0. Each of the original m equations can be
weighted differently using weights wi by including a diagonal m×m matrix W with entries
wi

2 to give

AT W A x = AT W b

Then the residual r for this weighted system satisfies AT W r = AT W (b – A x) = 0.

For sequential batch least-squares, suppose that the first batch of data requires solving

A1 x ≈ b1
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resulting in a (weighted) least-squares solution x1. Then a second batch of data would
require solving

A2 x ≈ b2

To utilize both sets of data would require solving both equations simultaneously, which
corresponds to the weighted least-squares system

[(AT W A)1 + (AT W A)2] x = (AT W b)1 + (AT W b)2

or using the first solution x1

[(AT W A)1 + (AT W A)2] x = (AT W A)1 x1 + (AT W b)2

This form corresponds to that given in Ref. 1. Of course, to give the older data less
weight, say by a factor f, one can reduce the weights in W1, or equivalently scale the
entries of (AT W A)1, by a factor f 2.

In differential correction, the form above must be modified because the systems are
solved for changes in the elements rather than the elements themselves, and because each
batch system is iterated to account for nonlinearity, and also because each batch has a
different epoch. The system to be solved for each iteration on one batch of data is

OX
X

O ∆≈∆
∂
∂

where ∆X is the change in the elements and ∆O is the observed quantities minus the
corresponding quantities calculated from the current elements (O-C’s), and the coefficient
matrix ∂O/∂X is the partials of the observed quantities with respect to the elements. Then
after k iterations, the weighted least-squares solution for the first batch satisfies

( ) ( ) ( ) 1
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1

1
1

11

1

1
−−−−

=− kkTkkkT bWAXXWAA

where the subscripts indicate the batch, superscripts indicate iteration number, kX1  is the

elements found from the first batch after k iterations, 1
11

1
1

−− ∂∂= kk XOA ,
1

11
1

1
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1
−−− −=∆= kkk COOb , with 1

1
−kA  and 1

1
−kC  being calculated from the previous

iteration’s elements 1
1

−kX .

Then for the next batch, the epoch shifts from t1 to t2. The new system after n
iterations is

( ) 1
2

1
22

1
2 2

−−− ≈− n
t

nnn bXXA
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where the subscript t2 indicates elements at the new epoch. To include the old data as
well, the old system at the old epoch would be

( ) 1
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1 1

−−− ≈− k
t

knk bXXA .

Note that these two systems apply to the new elements nX 2  at different epochs. Small
changes in elements can be shifted approximately to the old epoch using the linearization
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Moving the known quantities to the right-hand side and applying weighted least squares
gives
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which simplifies, since the old elements kX1  satisfy the old weighted least squares
equation, to give
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Hence, combining the old data with the new gives the combined least squares system
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In terms of the array names used in AUTODC, E is ( ) 1
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(E + EPT P EP) ∆X = (G + EPT P GP).

This explains the basic equations used by AUTODC to update E and G.

Note for comparison purposes that this P is the inverse of Vallado’s covariance
matrix P.

In the current version of the AUTODC code, the option to perform a sequential-batch
differential correction has been bypassed.  The matrix ATWA from the previous DC is set
to zero, and all observations in the fit span are included in the DC process.  The
implementation of the historical data option is being reexamined.

Corrections in Classical Elements

If only one in a pair of classical elements, either (e, ω) or (Ω, cos i), should be
corrected, the AUTODC code finds differential corrections Xclassical in terms of classical
elements. For this purpose, the partials in the 8×8 Jacobian matrix are computed:

classical

rnonsingula

X

X
TX

∂
∂

= .

Two of these partials contain a factor in the denominator of sin i, which is omitted in the
AUTODC code, to prevent a singularity at zero inclination.

The chain rule is used to obtain the classical partials:

( ) ( )
PE*TX

X

X

X

,

X

,
PE =

∂
∂

∂
∂=

∂
∂=

classical

rnonsingula

rnonsingulaclassical
classical *

vrvr

Thus the classical Eclassical and Gclassical matrices are:

Eclassical = TXT * E TX

Gclassical = TXT * G

The solution to the normal equations will be the classical correction xclassical. The chain
rule is used to convert back to the nonsingular correction:

xnonsingular = TX * xclassical

Solution to Normal Equations

The normal equations Ex = G are solved by Gauss-Jordan elimination with full
pivoting. The algorithm is identical to one in the book Numerical Recipes in Fortran by
Press, et al. (Ref. 6).
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The AUTODC algorithm contains the unusual feature that, when an off-diagonal

element of E is too large relative to the corresponding diagonal elements, i.e. 2
ijE  >

(SING)EiiEjj , then that row (for even-number calls) or column (for odd-number calls) is
inactivated. The singularity indicator SING is initially set to near one. Then, if the active
matrix is singular, the threshold SING is lowered by 10% (to inactivate more
rows/columns) and the solution is tried again. Eventually, either a solution is found, or
the whole matrix gets made inactive (flagged by a return value SING = 0), or the
threshold gets too small (SING ≤ 0.01) which indicates that the whole system is singular.

Updating Elements

Once the normal equations have been solved for the nonsingular corrections xnonsingular,
they may be added to the old elements to form the new elements. First, the classical
elements Xlast classical from the last iteration are converted to the nonsingular elements
Xlast nonsingular.

Next, the nonsingular elements are updated:

Xnew nonsingular = Xlast nonsingular + V(1) * xnonsingular

Here V(1) is a relaxation factor used to scale down the differential corrections if any is too
large. If |xj| > T1(xj) for any j = 1, …, 8, the scale factor is

( ) ( )











= …=

j

j
j

x

xT
V

1
8,,1min1

where T1(xj) are the numbers given below:

T1(xj) T2(xj)

x1 = M + ω + Ω 5×10-2 10-5

x2 = n 5×10-4 10-6

x3 = 2n& 5×10-6 10-8

x4 = 6n&& 5×10-8 10-10

x5 = e cos (ω + Ω) 5×10-2 10-5

x6 = e sin (ω + Ω) 5×10-2 10-5

x7 = e sin (i/2) cos Ω 5×10-2 10-5

x8 = e sin (i/2) sin Ω 5×10-2 10-5
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Finally, the new nonsingular elements Xnew nonsingular are converted to the new classical
elements Xnew classical.

Iterations

The following tests are applied to determine if the iterations should continue:

(i) If it is the first iteration, continue iterations.

(ii) If |xj| > T2(xj) for any j = 1,…,8 , continue iterations. Here T2(xj) are the numbers
given above.

(iii) If maxlast or new iteration 
( )







RES

V 2
 > .1, continue iterations.

Here

( )[ ] ( )[ ]∑ ∑
= =

=
N

i j
ii jOCRES

1

6

1

2jWT

is the weighted sum of the squares of the new residuals.  The parameter V(2) is defined by

( ) ( ) ( )∑
=

=
8

1
12

j
j jGVxV

If all of the tests are met in no more than ITERI iterations, the DC is deemed to have
converged. The parameter ITERI is set to 60 for the first set of iterations, and
subsequently may be set to 20, or set to 0 as a flag to compute statistics.

Best Elements

AUTODC employs a scheme to iteratively tighten tolerances and repeat the element
correction process in order to obtain the best element set for the given satellite. The goal
is to lower the RMS while retaining an "acceptable" amount of data in the DC.  The final
outcome is the "best" set of mean elements.  In this process, the percentage of observation
data and resultant RMS used in the DC are examined for both the entire fit span and for
the most recent data received since the last DC session.

An initial DC is attempted with the tolerance previously described as the initial
tolerance TOL, for a maximum of ITERI = 60 iterations.  If more than 85% of the
observations in the fit span, and 80% of the new observations, are used, the tolerance is
shrunk to













 +∗= 5.

STOL

RMS
5.1INT ,1maxSTOLTOL .
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The parameter STOL is half the initial tolerance, and

( )[ ] NjOC
N

i j
i 6RMS

1

6

1

2∑∑
= =

=

is the unweighted root mean square of the residuals. Here the RMS is calculated with
either all residuals in the fit span, or just the new residuals, whichever yields the
maximum RMS. Another DC iteration cycle is then attempted.

This process is repeated until the new value for TOL is less than the tolerance goal of
half the initial tolerance.  As the tolerance is shrunk, the DC is considered acceptable if
more than 85% of the observations for the entire fit span, and 50% of the new
observations, are used in the DC.

If only 75-85% of the observations in the fit span, and 50% of the new observations,
were used in the last iteration cycle, no more attempts are made to shrink the tolerance.
The DC is terminated and the results accepted.

During this cycle of reducing the tolerance and attempting another DC, the elements
from each cycle are saved as the best element set if an acceptable amount of data was
retained in the DC. If this process of reducing the tolerance does not converge to the
tolerance goal with an acceptable amount of data, the process is terminated and the best
element set is accepted as the new element set.

Provisions are made in AUTODC if the initial tolerance is too low for an acceptable
DC on the first attempt.  In this case, the tolerance is changed to TOL = 1 ER and a DC is
performed with zero iterations to compute statistical information only. Then a third DC is
performed with ITERI = 20 and

 
[ ]







 +∗= 1

STOL

RMS,STOLmax
3INT STOLTOL .

The process then continues, as described above, to find the best element set.

CONCLUSION

This has been a brief summary of some of the salient features of the
NAVSPACECOM differential correction process. For more explanation, and for the
Fortran source code, the reader is referred to the documentation of Danielson and
Canright (Ref. 7).

Now that this documentation has been completed the next step is to study where
improvements can be made in the software. Progress in this direction has been made by
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Marshall (Ref. 8), who showed the benefits of Singular Value Decomposition when
solving the normal equations. Goals of the improvement process include

(i) Enabling the software to update 100% of the element sets automatically

(ii) Improving the accuracy of the state and covariance

(iii) Decreasing computer run time.
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