
RELIABILITY
DETAILED OVERVIEW

In military testing and operational analysis reliability generally refers to how, why, and
when system hardware and software failures occur: a system is reliable if malfunctions or
failures occur infrequently, and have small impact on mission success. Otherwise it is unreliable.
The degree of reliability, and types of failure are important, and should be quantified.

Formal Definition: mission reliability is the ability of an item to perform its required
functions for the duration of a specified mission. This definition applies directly to items of
continuous use, such as engines, communication devices, and sensors.

Ability is usually assessed as a probability or a mean value, for example, mean operating
time between failures (MOTBF or MTBF; MTBOMF = “mean time between operational mission
failures” is also common terminology, but longer). An alternative definition, applicable to single-
use items such as missiles or ammunition, is the probability of single-shot success. In the T&E
process the above probabilities must be compared to requirement numbers. Such measures are
always conditional on conditions like environment (heat, cold) and transport shocks. They are
subject to uncertainties that require control and understanding.

A primary function of T&E is to discover and manage or control failure modes; these are
identifiable specific weaknesses in system design, manufacture, and typical field usage that can
reduce system reliability. At some point this process must end: formally, if the item reliability
meets a specific requirement it is acceptable for field usage on that dimension, and for specified
missions. A further T&E task is to quantify maintenance, repair, and logistics needs that must be
satisfied to enable the specified reliability to be achieved and maintained in field use.

Note that failures caused by enemy action (hits in combat, Electronic Warfare) are not
usually classed with ordinary mechanical or software failures, or failure modes. But, for
example, it is important to discover that an aircraft ejection seat does not operate if its activation
mechanism is quite vulnerable to enemy fire.

• Questions:

(a) In the planned T&E process, how can failure modes be found, removed, or adequately
reduced in effect, early, safely, and economically? This is a re-design or modification issue.
Search for failure event precursors is important: there may be corrosion, fatigue cracks, local
heating or vibration.

(b) Are there suitable workarounds in the field, when and if failures do occur?

(c) What are (cost-effective) alternatives for achieving reliable, if somewhat lower, performance
in the event of failure? Can the system gracefully degrade? Are there particularly damaging
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common-mode failure possibilities that are operationally and economically highly costly? Can
re-decision help?

(d) After how much time, or how many operational actions, do failures tend to happen? Have
high “infant mortality” effects been removed (by burn-in); is wear and aging understood and
controllable? Can testing be done with components/subsystems of different ages and previous
stress histories? How do failure types (from different modes) affect repair/restoration times to
some useful level of operational utility?

(e) What are logistics support requirements for spare parts, maintenance personnel capability,
instrumentation, documentation? These may change (increase) over system life.

(f) Is there adequate evidence that ORD stated requirements are satisfied? These under defined
operational conditions?

• Methods for Control of Failure Sources:

(1) re-design of the system

(2) redundancy; this may be designed in, but its operation must be checked. Software
(programs) cannot be made redundant.

(3) prevention: on-line diagnosis to automatically predict and forestall catastrophic failures
(Examples: vibration, heating, crack-growth monitoring to forestall helicopter rotor
blade breakage, main engine breakdown)

Note: automated systems can fail and give false or no alarms. These must be tested.
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RELIABILITY: TESTING MANAGEMENT ISSUES

• Reliability Requirements: define early in program.

~ Include all likely/meaningful failure types, causes.

~ Spotlight possible problems early, using DT experience, examination of similar systems.

• Confront reliability testing requirements:

~ investment: facilities, personnel, and time-on-test, under different conditions vs.
uncertainty concerning faults remaining, age/wearout effects; parameter values;

~ justify appropriateness/timeliness of next testing state;

~ balance testing against costs of field failures.

• Use “reliability growth” predictions cautiously:

~ apply appropriate models (use alternatives);

~ assess uncertainty of fitted model;

~ use appropriate analogous-system experience.

• Software and computer-related faults often occur and can be highly detrimental to field
success, and should be anticipated.

~ Check for consequences (use M&S);

~ check for occurrence in analogous systems.
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QUANTIFICATION OF RELIABILITY

Measurements

• The reliability of continuously-operating systems, such as ships, land vehicles, aircraft,
and certain communication and sensor systems, is typically measured by operating times to
failure (sometimes called system lifetimes); these times are measured from a moment at which
the system becomes operative or up, for example, just following a successful repair, to the next
failure (repair requirement); time is a simple, but incomplete, measure of exposure to failure;
another starting point is at turn-on: power switch (attempted) activation or engine start attempt
may coincide with a failure. The type or mode of failure should be recorded in detail. Another
measure of exposure to failure is number of stressful events, such as aircraft landings,
particularly on carriers. For systems such as trucks, tanks, and other vehicles, a better measure of
exposure may be distance (e.g. miles) between failures. For land-operating platforms, terrain,
vehicle speed, and loading all influence distance between failures, or number of aircraft landings
between failures.

• Times or distances to failure typically vary considerably and unpredictably; an average of
measured times (or distances) is one common summary, but simplistic overall averages may
obscure evidence of learning or “reliability growth” that often occurs when testing new items
under different operating conditions; even carefully constructed averages often involve small
numbers of times or events to failure and, hence are uncertain estimates and predictors of
unknown quality. Graphical methods are useful for picking up changes or trends in actual data.

Note: it is important to distinguish item removals from item failures or preventive repairs.
Removals may be in anticipation of failures, and be operationally sensible, but also be
subjectively driven.

• Successive system failures can occur in different subsystems, or from different failure
sources or modes; multiple component or subsystem failures may occur on an occasion of system
failure, possibly from a common cause, such as an environmental surge. These must be recorded.
Both the individual times, and the failure types, will typically depend on system environment and
handling. A system failure that occurs as a result of an external or internal shock (mechanical,
electrical, heat …) can involve several components or subsystems (modes), causing them to fail
simultaneously, or to produce a failure cascade.

• Premature failures may be the result of inappropriate and/or incomplete repair. This event
type should be part of the database accumulated.

Note: quick and partial repairs to partial performance may be an operationally suitable and
effective strategy.

• The reliability of on-demand or one-shot systems such as guns, missile launchers, and
ammunition or missiles is typically quantified by the number of successes (good shots, but not
necessarily hits) out of a specified number of trials (trigger-pulls). If the chosen quantification is
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the number of trials until/to failure then there is an analogy with the operating-time-to-failure
concept.

• Averages and probabilities (estimated) are often used as summaries: fraction of trials
(shots, or missions) that are successes from the perspective of hardware and software designed
operation. Such fractions may be unreliable estimates and predictors if they haphazardly
combine many different operational conditions, and be uncertain (non-predictive) if they are
made up of very small numbers. Field testing must be designed to obtain meaningful basic
measurements of such responses (“dependent variables”) as times, or trials, to failure and
influential factors (“independent variables”) likely to affect such responses. Details in Statistics
for Testers.

Note: it is first important to discover and remove or manage physical design faults and
vulnerabilities, then to measure or quantify their probability of causing mission failure.
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Data Collection

• Meaningful failure data collection on systems in an OT environment is challenging and
requires care. The aim of collecting Effectiveness data (e.g. on kills, detections, range, etc.) may
dominate the need for adequate Suitability data. This tendency should be resisted. It is desirable
to collect actual operating times to failure or trials to failure, and the identities of subsystems
involved plus failure modes that have been identified previously, or come as a surprise. These
are important Suitability test responses. Summaries of these responses can be related to
(“explained by” in statistics-talk) possible causative influences such as environment, heat/cold,
fuel quality (engines), operation and maintenance. Study of behavior of analogous systems can
suggest the magnitudes of a to-be-tested system’s times to failure and failure modes; the latter
must be reported as possible candidates for re-design. It is also important to record and study as
many as possible causative influences on the basic reliability responses. In some cases data is
made available as counts of failures over some time period (failures per month). These data are
not straightforwardly interpreted unless the exposure-to-failure time is known, e.g. running or
operating time. In many cases operating or especially flying time is less a measure of stress, and
predictor of failure, than is the number of landings (possibly takeoffs); a carrier landing,
especially under heavy weather conditions, may be stressful, and the stresses may accumulate to
cause failure.

• Test data may be “dirty”: complete times to failure may not be observed (censored) since
allowed test time ran out, observations are not recorded or incorrectly recorded, etc. For some
procedures, see Statistics for Testers.

CAUTION:   No foolproof statistical “tricks” are available to compensate for improper data
element definition, collection and recording practices that produce unreliable, incomplete,
inaccurate, or invalid data entries.
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Data Presentation and Exploration

Initial data examination, especially of times to between failure, symbolically T1, T2, T3 …
where T1 is the (operating) time to first failure, T2 is the (operating) time from the moment of
system repair completion to the second failure, etc., can be informatively examined by a

Time-Line Plot

T1

0
T2 T3 T13

× ×× × ×…
T14

Further information is conveyed if the location or source of failure is recorded: e.g. if the points

refer to a truck, # for engine, ́  for tire, � for transmission, … . One can look for bunching of
points at the beginning, with stretchout occurring later: this indicates that “infant mortality”
effects occurred, and that repairs and effective modifications or re-designs were made. In some
systems bunching occurs much later; this suggests that system elements are aging, i.e.
susceptible to wearout (together, unless the labels are all of one subsystem or component). Any
bunching pattern signals that a stressful environment may have occurred. An attempt to
understand the source of stress is called for.

An alternative graphical presentation that is vivid and sometimes preferred is the
Cumulative Sum Plot (CuSum):

T1

T2

T3

1 2 3 T-order

Sum
T1,
T1 + T2,
T1 + T2 + T3

The general stretchout of the example Time-Line Plot and the hollow rise of the CuSum
Plot both show that times between successive failures are increasing: “reliability growth” is said
to occur (not to be expected to continue forever).
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A curve like this:

1 2 3 T-order

Sum of Ts

4 5 6

Aging Regime 

Constant
Failure Rate
Regime

Burn-in Regime

shows that “reliability growth” is occurring, i.e. successive times to failure are getting longer, at
first, next is (temporarily) linearly increasing, and finally flattens out. If the plot becomes
roughly linear in time the indication is that the system’s failure propensity is, for the present,
“stationary in time” (in the environment considered). This does not rule out random fluctuations
in the times between failure, or in the numbers of failures in mission times of the same length. If
and when the CuSum flattens, aging has set in; the item or system may need to be replaced.

• Strong recommendation:  Do not begin (and, especially, end) data analysis immediately
with the computation of an overall average, or estimated probability of completing a mission
time, e.g. by computing the total number of times to failure that exceed a mission time, divided
by the total observed times to failure. Make graphs, look for systematic changes, breaks or
jumps. The first objective is to look for causes of failures, or evidence of improper design, or
sensitivity to environment stresses. It is first important to understand, and if possible correct, a
system’s weak points, then to measure accurately what has been done.
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QUANTIFICATION OF RELIABILITY

Measures of Reliability

These are useful summaries, but omit some details. Awareness of measure-vulnerability
is essential.

• MEAN (average) system time to mission failure (MTTF) = m.

~ Appropriate only if system stable (reliability growth has ended)

~ Estimate from data: Average n observed times to failure, (t1 + t2 +…+ tn)/n = $m
( $m = estimated m). Model needed otherwise (if data is censored)

(~ CAUTION : The formula that states:

Mean Time  Between
Operational

Mission Failures

Total operating time (e.g.  driving time,
fly time,  system - on time)

Total number of operational
mission failures

=

is not generally accurate, so avoid. It works in theory if the data are exponentially
distributed or if the operating time is long, meaning that at least 5 failures are observed
during operating time.)

~ Error, $m – m, reduced if observation number increased.

~ Time to failure is the active or “up” time from moment system turned on to moment of
mission-affecting failure. Do not include off times.

NOTE: length of off-times can influence/affect (possibly shorten) active time to failure.
Example: an engine, e.g. auto, that is inactive for a long time period may be difficult to
start and keep running.

NOTE: observed time to failure is zero if system won’t “turn on”.

(Do not ignore or throw out such “times”. They may tend to occur after the system has
been turned off for some time, or goes down for repair, and the unit is returned to
inventory.)

~ A system MTTF depends on conditions: environment (heat, cold, movement shock, time
and treatment since last usage). It is important to test under all possible mission
conditions.
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• PROBABILITY of mission completion without mission-critical failure

~ As appropriate:

Probability (Time to mission failure exceeds mission duration),
~ Depends on environment, handling by personnel, previous maintenance

or

Probability (Miles traveled/flown/sailed exceeds mission distance),
~ Depends on environment, speed, maintenance

or

Probability (Rounds/missiles fired adequate for mission success),
~ May depend on time since last burst fired (gun must cool)

or

Probability (Sensor or communication package does not fail during mission)

~ Appropriate only if system stable (reliability growth phase effectively ended)

~ Estimate from data: $pmc

$pmc =

=

Number of missions survived without system failure

Number of missions (of some duration under some conditions)

Estimated probability that time to system 
failure exceeds mission time

~ Example: sensor
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QUANTIFICATION OF RELIABILITY

Models for Reliability

• Reliability models mathematically represent or summarize the probability of reliability-
related events, such as time or distance, etc., to failure, or failure on demand.

~ They are based on subject-matter facts and assumptions (physics, engineering,
psychology, operational environment, etc.);

~ they conveniently summarize or compress observational data;

~ they describe the behavior of future data, given needed parameter values; some
uncertainty can be represented, by standard errors or confidence intervals, but these do
not reflect errors of the model, or changes in conditions. Caution!

~ Understanding of reliability models requires mathematics: algebra, calculus, probability
theory. The inclusiveness and appropriateness of phenomena represented (or omitted) is
more important than the precise model. Consult an experienced expert.
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The Exponential Distribution Model

If an item’s chance of failure in any operating period is not age dependent, or does not
change with number of operating hours since last failure, its random time to failure, T, has the
exponential distribution:

P t F t e

t

tT
T

T

T

≤ ≡ = − −k p a f
k pProbability  less than Distribution function of 

124 34 1 244 344
1 λ

~ graphical illustrations

~ The parameter λ is called a failure or hazard rate.

~ The MTTF, mean time to failure, E[T] = 1/λ.

~ The probability of mission success using the exponential model is

Prob Mission Time exceeds = mission duration

MTTF

t P T t e

t
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I
K

−λ λ

exp

~ The parameter λ must usually be estimated from data.

Result: If the Exponential model holds (is assumed), an estimate of λ, $λ  is:

$λ =

≡

Number of failures during an operating time,  

Operating time,  

t

t

N t

t

0

0

0

0

b g

§ If individual times to failure are t1, t2, …, tn, then

$λ = =
+ + +

=1 1

1 2AVE (of times)

n

t t t tnK
.

~ If the item is a truck or tank, operating time may be replaced by operating distance, d0.

$λ = Number of failures during operating / travel distance,  

Operating distance,  

d

d
0

0

§ Note: λ, thus, $λ , often depends on environmental factors (heat, cold, terrain,
handling …). Observations from different environments should not be uncritically
combined (“pooled”).
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§ Observations from different environments can be combined statistically by use of
nonlinear statistical regression techniques.

CAUTION:   This is a specialized topic that requires expert attention.

The results can be used for prediction, e.g. under specified field conditions, but there
are several possible error sources so the predictions may be untrustworthy.

~ Series Systems:

§ A system consists of two or more subsystems (missile system launch, propulsion,
guidance, detonation subsystems)

§ Any subsystem failure means system failure

§ If subsystems fail exponentially and independently, with rates λ1, λ2, …, λk (k is
number of subsystems)

Probability System does not fail missiona f b g= =− − − − + + +e e e et t t t t tk k k kλ λ λ λ λ λ1 1 2 2 1 1 2 2K
K

t1 = exposure duration, subsystem 1, … tj = same, subsystem j (j = 1, 2, …, k)

§ CAUTION:  environmental effects (shocks to entire system) can induce dependence.
Often reduces probability of failure avoidance.
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The Weibull Distribution Model

If an item’s chance of failure in any operating period either (i) steadily increases with age
(operating time since last failure), or (ii) decreases with age, then its random time to failure, T, is
often modeled by the Weibull distribution family:

P t F t e tT T≤ ≡ = − −k p a f a f1 λ β

Weibull
distribution form

1 24 34

~ β is the shape parameter:

§ if β = 1, T is the exponential distribution model;

§ if β > 1 the model represents situations in which age increases the probability of
failure (in a time period); (this can be the result of wearout, or accumulated damage,
e.g. from a succession of environmental shocks);

§ if β < 1 the model represents situations in which the probability of failure decreases
with age. (This effect can be the result of mixing data: some from items with short
lives, some with long (caused by manufacturing or environmental variations)).

~ The mean of the general (β not 1) Weibull model is not 1/λ as for the simple exponential
(it depends upon β, and is E ET T= = = =Γ 1 2 2 0 89β λβ β π λa f ; , .if ).

(Note: Γ(x) is the gamma function, equal to the factorial (x – 1)! for integer x. Go to an
expert or get a book!)

~ 1/λ is always the 63.2nd percentile of the Weibull (provides rough estimate of λ from
data)

~ Summary.  The Weibull is

§ convenient, frequently used, but

§ not the only, or always, best model to use to represent age-dependence effects. For
other options, based on particular scientific or operational conditions, see references.
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Counting Models

An alternative to observing and recording, then modeling the times/distances between
failures is to observe and model counts of failure-type events during mission periods.

• A basic simple model is the Poisson: probability of number of “rare events” in fixed time
period, when chance of an event (failure) is equal but small in any short time interval, and is
uninfluenced by past history.

~ Parametric: probability of event (e.g. failure) in (t, t + h) is λh for small h; λ is the event
rate.

~ A possible first model for describing numbers of failures in given operating times,
excluding downtimes of complex systems that are treated as mature.

§ Simple statistical test for Poisson: estimate mean number of events per equal
intervals, and variance of same (it will be necessary to have counts over several such
intervals); if these are close to equal the Poisson may be a useful interim assumption.
It is often true that the variance considerably exceeds the mean. Such overvariability
has many possible causes, one being an irregular background environment that raises
the rate temporarily.

~ In general, if N(t) is the number of events in time t,

P t k e
t

k
t

k

Na fl q a f
= = −λ λ

!
.

~ Special Case: Under Poisson model, the probability of no/zero failures in time t is e–λt.

The parameter λ is the same as that for the Exponential time-to-failure model: 1/λ is the
mean time between failures in this model as well.

• Alternative: Bernoulli-trials (“dishonest coin flip”) model: if time axis is divided into hours
or days (discrete time), or into similar missions, e.g. aircraft sorties, and either zero or one
failure can occur in a time period, independently of past (as if generated by the flip of a
weighted coin with success probability f. The number of failures in n time periods, N(n), has
probability

P n k
n

k n k
f fk n kNa fl q a f a f= =

−
− −!

! !
1

(where k! = (k)(k – 1) (k – 2)…(1)). The probability of no/zero failures in n time periods is
(1 – f)n = e–(ln(1–f))n. If we replace ln(1 – f)n by λt the present model resembles the Exponential.
It should!  Reasons elsewhere.
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• Environment/condition-adjusted (“accelerated”) counting models:

The failure rate/probability parameters, λ and f above, can systematically vary with
environmental conditions. For instance, if A is absolute temperature, the Poisson rate at A is
λ(A) = λ0e

-γ/A so as absolute temperature (A = 273.2 + C° Centigrade) becomes large the failure
rate increases. The particular model is the Arrhenins model sometimes used in accelerated life
testing.
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Counting Models and Reliability Growth

• Reliability Growth models, based on Non-homogeneous Poisson.

In many situations, system design or execution faults are gradually removed during
development and early operational testing. In this case the number of failure events declines.

~ A model:

P t n e H t nH t nNa fl q a fa= = − ) ! ,

with H t t dt
t

a f a f= ′ ′z λ
0

.

H(t) is called the hazard, λ(t) the hazard/failure rate.

~ Example: Weibull-like hazard rate

λ θ γ θ θ ββt t; , ,a f a f=  and   positive.

Note:  time to first event has Weibull distribution, but not afterwards.

H t t dt
t

t

a f a f= ′ ′ =
+z +

λ θ γ θ
β

β β
; ,

0

1

1
.

Note:  if reliability growth is occurring, β is less than unity/one.
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