
5 ON A STOCHASTIC KNAPSACK

PROBLEM AND GENERALIZATIONS

Appears is Advances in Computational and Stochastic Optimization, Logic Pro-
gramming and Heuristic Search, ed. Woodruff, D.L., 1998.

David P. Morton1 and R. Kevin Wood2

1Graduate Program in Operations Research

The University of Texas at Austin

Austin, TX 78712

2Operations Research Department

Naval Postgraduate School

Monterey, CA 93943

Abstract: We consider an integer stochastic knapsack problem (SKP) where
the weight of each item is deterministic, but the vector of returns for the items
is random with known distribution. The objective is to maximize the probabil-
ity that a total return threshold is met or exceeded. We study several solution
approaches. Exact procedures, based on dynamic programming (DP) and inte-
ger programming (IP), are developed for returns that are independent normal
random variables with integral means and variances. Computation indicates
that the DP is significantly faster the most efficient algorithm to date. The IP
is less efficient, but is applicable to more general stochastic IPs with indepen-
dent normal returns. We also develop a Monte Carlo approximation procedure
to solve SKPs with general distributions on the random returns. This method
utilizes upper- and lower-bound estimators on the true optimal solution value

149

150

in order to construct a confidence interval on the optimality gap of a candidate
solution.

1 INTRODUCTION

Consider the following stochastic integer programming problem with random
objective function,

max
x

P (rx ≥ c)
s.t. Ax ≤ b

x ∈ ZK+ ,

(1)

where ZK+ is the set of non-negative integerK-vectors, Ax ≤ b are deterministic
constraints, c is a deterministic “return threshold” but r = (r1, r2, . . . , rK) is a
random vector with known distribution. The problem is to select an optimal
x, denoted x∗, which maximizes the probability that the return rx meets or
exceeds threshold c.
The stochastic knapsack problem (SKP) is a special case of (1) that may be

formulated as follows:

max
x

P
K

k=1 l∈Lk
rklxkl ≥ c

s.t.

K

k=1 l∈Lk
wkxkl ≤ W

xkl ∈ {0, 1} ∀ k, l ∈ Lk.

(2)

Here, l∈Lk xkl is the number of items of type k to include in the knapsack,
and |Lk| is an upper bound on this value. The deterministic weight of each
item is wk > 0 and W is the known weight capacity of the knapsack. The
returns rk1, . . . , rk|Lk| for a specific item type k are identically distributed.
The dependence structure of the returns rkl is clearly an important modeling

consideration. The variants of the integer SKP addressed in Steinberg and
Parks [24], Sniedovich [23], Henig [11], and Carraway et al. [4] have returns
that are normal random variables which are independent both between item
types and within an item type. Independence within an item type means
that rk1, . . . , rk|Lk| are mutually independent random variables for each k. In
some systems this assumption is reasonable: For example, if we are purchasing
production equipment in an attempt to satisfy a certain threshold production
level and if machines fail independently, it may be appropriate to model the
production rates of multiple machines of the same type as independent random
variables. On the other hand, realizations of the returns on multiple financial

STOCHASTIC KNAPSACK PROBLEM 151

instruments (e.g., stocks, bonds) of the same type are typically identical. In
this latter case, and under the assumption that |Lk| is limited only by the
weight capacity of the knapsack, (2) can be simplified to

max
x

P

K

k=1

rkxk ≥ c

s.t.
K

k=1

wkxk ≤ W

xk ∈ Z+ ∀ k

(3)

where rk ≡ rk1 = rk2 = · · · = rk|Lk|, wp1.
Sniedovich [23] and Henig [11] discuss various optimality criteria for integer

SKPs, and Prékopa [20, pp. 243-247] describes methods of handling random
objective functions in stochastic programs. Under the assumption of normally
distributed coefficients, Greenberg [10], Ishii and Nishida [12], and Morita et al.
[16] examine SKPs with continuous decision variables. There is a separate liter-
ature regarding on-line stochastic knapsack problems which have applications
in telecommunications; see, for example, Chiu et al. [5], Gavious and Rosberg
[8], Marchetti-Spaccamela and Vercellis [15], Papastavrou et al. [19], Ross [21],
and Ross and Tsang [22]. While there are many variants of on-line SKPs, all
have the property that items arrive over time and must be accepted or rejected
upon arrival without knowing what items will be available for consideration in
the future. In this paper we restrict our attention to (2), a “static” SKP.
In Section 2, we discuss the special case of the SKP in which the returns are

normal random variables that are independent both between and within item
types, i.e., model (2) with returns rkl being mutually independent for all l and
k. The returns within a type are identically distributed and are assumed to
have integral mean µk ≡ Erk1 and integral variance vk ≡ var rk1 > 0. Sec-
tion 2 derives a simple dynamic-programming-based algorithm for this problem,
demonstrates the algorithm’s computational effectiveness, and then proposes
and illustrates the viability of integer programming methods for solving both
the SKP and model (1) which may have general linear constraints. (In the
rest of the paper, “DP” will mean “dynamic program” or “dynamic program-
ming,” and “IP” will mean “integer program” or “integer programming.”) In
Section 3, we consider the case where the returns are governed by general dis-
tributions that can have arbitrary dependency structures both between and
within item types. For such problems, we apply a Monte Carlo procedure that
finds a feasible candidate solution x̂ and constructs confidence intervals on its
optimality gap, P (rx∗ ≥ c)− P (rx̂ ≥ c).

152

2 SKP WITH INDEPENDENT NORMAL RETURN DISTRIBUTIONS

Let rkl ∼ N(µk, vk), where N(µk, vk) is a normal random variable with integral
mean µk and integral variance vk, and assume that all rkl, k = 1, . . . ,K, l ∈ Lk,
are independent, i.e., the returns are independent both between and within item
types. Let µ = (µ1, . . . , µK) and v = (v1, . . . , vK). Under these assumptions,

P

K

k=1 l∈Lk
rklxkl ≥ c = P

N(0, 1) ≥ c− K
k=1 l∈Lk µkxkl

K
k=1 l∈Lk vkxkl

1/2

= P N(0, 1) ≥ (c− µx)/√vx ,

where xk ≡ l∈Lk xkl and x = (x1, . . . , xK)
T = 0. We can therefore maximize

the probability of exceeding the return threshold, subject to x ∈ X = {x :
Ax ≥ b,x ∈ ZK+ }, by solving

ρ∗ = min
x

(c− µx)/√vx
s.t. x ∈ X

(4)

provided x∗ = 0. This condition is assumed to hold throughout this section
since the possibility that x∗ = 0 is a simple special case to check. For the
stochastic knapsack problem with normal returns, (4) specializes to

SKP(W)

ρ∗(W) = min
x

(c− µx)/√vx
s.t. wx ≤ W

x ∈ ZK+ .

(5)

A standard way of attacking (4) and (5), e.g., Henig [11], due in concept
to Geoffrion [9], involves solving minx∈X (λµ + (1 − λ)v)x multiple times for
different values of λ between 0 and 1. However, the method is not guaranteed
to achieve an optimal solution when ρ∗ > 0, i.e., when P (rx∗ ≥ c) < 1/2
[11]. Carraway et al. [4] use another solution for SKP(W), one that is based
on “generalized dynamic programming” [2]. Generalized DP maintains a set of
partial solutions for each state of the knapsack (amount of capacity consumed):
These partial solutions are ones that might be extended to an optimal solution.
(Standard DP maintains only a single solution for each state.) The generalized
technique requires that specialized bounds be computed to eliminate partial
solutions by proving that they cannot be extended to an optimal solution.
In Section 2.1, we develop a DP procedure for solving SKP(W) that is much
simpler in concept than the methods described above and is guaranteed to yield

STOCHASTIC KNAPSACK PROBLEM 153

an optimal solution in all cases. In Section 2.2 we show how IP techniques may
be used to solve SKP(W) and the more general problem (4). While the IP
approach is less efficient than the DP procedure, it can still be used to solve
SKP(W) effectively and it has the advantage that any type of linear constraints
can be incorporated in the model.

2.1 Dynamic Programming Method

Suppose that we know valid, integral lower and upper bounds, v
¯
and v̄ re-

spectively, on v∗ = vx∗ where x∗ is an optimal solution to SKP(W). Let
V = {v

¯
, v
¯
+ 1, . . . , v̄}. Since all data are integral, SKP(W) and the following

problem are equivalent:

ρ∗ = min
v∈V

min
x

(c− µx)/√v
s.t. vx = v

x ∈ X.

(6)

For fixed v, the objective function in (6) is minimized when µx is maximized.
Therefore, (6) can be solved by solving

max
x

µx

s.t. vx = v

x ∈ X

(7)

to obtain solutions xv for each v ∈ V . Then, ρ∗ = minv∈V (c − µxv)/
√
v,

and any solution xv, v ∈ V , which satisfies ρ∗ = (c − µxv)/
√
v is an optimal

solution to (4).
Applying the above methodology to SKP(W), (7) becomes

KP(W, v)

max
x

µx

s.t. wx ≤ W

vx = v

x ∈ ZK+

(8)

which is just a two-constraint IP that can be solved with reasonable efficiency
by extending the standard DP algorithm for the simple knapsack problem. (A
text such as Dreyfus and Law [7, pp. 108-110] describes the basic recursion and
algorithm; Weingartner and Ness [26] and Nemhauser and Ullman [18] solve
knapsack problems with multiple constraints using DP.) Described below is a

154

scheme for solving SKP(W), based on solving a family of problems of the form
KP(W, v), by DP.
Let f(w, v) denote the optimal solution value to KPE(w, v) which is KP(W,v)

except that wx ≤ W is replaced by wx = w. For pairs (w, v) that yield an
infeasible problem KPE(w, v), we use the convention that f(w, v) = −∞. The
first phase of the following algorithm recursively determines f(w, v) for w ∈
{w
¯
, w
¯
+ 1, . . . ,W}, and v ∈ {v

¯
, v
¯
+ 1, . . . , v̄} where w

¯
= mink wk, v

¯
= mink vk,

and v̄ = maxk vkW/wk . (The floor operator, · , yields the greatest inte-
ger that does not exceed its argument. Tighter bounds on v∗ are possible,
but these choices of v

¯
and v̄ suffice.) Now, define SKPE(w) as SKP(W) but

with the constraint wx ≤ W replaced by wx = w. The second phase of the
algorithm determines the optimal objective value ρ(w) to SKPE(w) for each
w ∈ {w

¯
, w
¯
+ 1, . . . ,W}; all possible values of v are examined to do this, for

each value of w. (Values of w < w
¯
are ignored since x∗ = 0 is trivially optimal

in such cases.) Finally, the third phase extracts the optimal solution x∗(w) to
SKP(w) for each w ∈ {w

¯
, w
¯
+ 1, . . . ,W}. This is simply the the best solution

to SKPE(w) over all w ∈ {w
¯
, w
¯
+ 1, . . . , w}.

Algorithm DPSKP
Input: Integer data for SKP(W) with K item types: w, µ, v, c, W ≥ mink wk.
Output: Optimal solution x∗(w) and solution value ρ∗(w) to SKP(w) for all
w ∈ {mink wk, . . . ,W}.
{

/* Phase 1 */

w
¯
← mink wk; v

¯
← mink vk; v̄ ← maxk vkW/wk ;

f(w, v)← −∞ ∀ (w, v) with w
¯
−maxk wk ≤ w ≤ W , v

¯
−maxk vk ≤ v ≤ v̄;

f(0, 0)← 0;

For (w = w
¯
to W and v = v

¯
to v̄) {

k(w, v)← argmaxk∈{1,...,K} [f(w − wk, v − vk) + µk];
f(w, v)← f(w − wk(w,v), v − vk(w,v)) + µk(w,v);

}
/* Phase 2 */

For (w = w
¯
to W) {

v ← argminv∈{v
¯
,...,v̄}(c− f(w, v))/

√
v;

ρ(w)← (c− f(w, v))/√v ; k(w)← k(w, v);

STOCHASTIC KNAPSACK PROBLEM 155

ŵ(w)← argminw ∈{w
¯
,...,w}ρ(w);

}
/* Phase 3 */

For (w = w
¯
to W) {

x← 0; ŵ ← ŵ(w); }
While (ŵ = 0) { xk(ŵ) ← xk(ŵ) + 1; ŵ ← ŵ − wk(ŵ); }
Print{“Solution to SKP(w) for w=”,w,“is x∗(w) =”,x};
Print{“with optimal objective value ρ∗(w) =”,ρ(ŵ(w))};

}
}
To test the algorithm, the data from Steinberg and Parks [24] is used to

create 28 SKPs, one for each W ∈ {3, . . . , 30}, and we compare our results
against the most recent computational work on these SKPs in Carraway et al.
[4]. The data describe a small stochastic knapsack problem with c = 30 and ten
items with weights, means, and variances in the following ranges: 3 ≤ wk ≤ 12,
4 ≤ µk ≤ 16, and 8 ≤ vk ≤ 25. DPSKP was programmed in Turbo-Pascal
as in [4] but run on a faster personal computer, a Dell Latitude Xpi laptop
computer with 40 megabytes of RAM and a 133 MHz Pentium processor. A
modest number of enhancements are made in the algorithm for efficiency’s sake.
For instance, v̄ is made a function of w via v̄(w) = maxk vkw/wk . The total
solution time for the algorithm (for all values of W between 3 and 30) is 0.026
seconds, which includes printing the solution but excludes time necessary for
input. This compares to a solution time (on an IBM PS/2 Model 50) of 114.15
seconds reported in [4] for all 28 problems and a solution time of 14.11 seconds
for the single hardest problem (W = 30). (The method of [4], although partially
based on DP, does not solve SKP(w) sequentially for increasing values of w.
Thus, we report the sum of their solution times for all W ∈ {3, . . . , 30} as well
as the time for W = 30.)
Solution times for the Steinberg-Parks data can be reduced by taking ad-

vantage of the fact that v̄ is large compared to µ̄, an analogous integral upper
bound on µx∗. Let µ

¯
be a lower bound on µx∗ and let U = {µ

¯
, µ
¯
+ 1, . . . , µ̄}.

The optimization of SKP(W) can then be rearranged to

ρ∗ = min
µ∈U

min
x

(c− µ)/√vx

s.t. µx = µ

x ∈ X.

(9)

156

For fixed µ > c, the objective is minimized when vx is minimized, but if µ < c,
the objective is minimized when vx is maximized. Thus, there are two cases
to handle (µ = c is a simple special case we ignore): If (9) is feasible for µ > c,
we redefine the lower bound as µ

¯
= c+ 1 and for all values of µ ∈ U , solve

MIN(µ)

min
x

vx

s.t. µx = µ

x ∈ X

(10)

for xµ. Otherwise, we redefine the upper bound as µ̄ = c − 1 and for all
µ ∈ U solve MAX(µ) for xµ, where MAX(µ) is MIN(µ) with “max” replacing

“min.” Then, x∗ ∈ argminµ∈U (c − µxµ)/ vxµ. (Note that it is possible
to determine which case must be considered first by solving maxx∈X µx and
observing whether or not the solution value exceeds c.)
The above idea is easily specialized to SKP(W). The most computationally

expensive part of the modified algorithm will be the analogs of Phase 1, one
where we obtain the solution value f(w, µ) by maximizing vx subject to wx =
w, µx = µ and x ∈ ZK+ , and the other where we obtain f(w, µ) by minimizing
vx subject to the same constraints. This work will be roughly proportional to
µ̄W +(c−1)w̃ where w̃ is the largest value of w for which there is no feasible x
with µx ≥ c, wx ≤ w, x ∈ ZK+ . The total work is therefore no worse than 2µ̄W ,
versus the work in DPSKP which is proportional to v̄W . For the test data set,
µ̄ = maxk µkW/wk = 68 and v̄ = maxk vkW/wk = 266. Thus, we would
expect the modified algorithm to require 1/4 to 1/2 the work of DPSKP. This
expectation is realized by a solution time of 0.009 seconds, excluding input.
Several final comments should be made on the basic methodology of DP-

SKP. The algorithm is easy to program and computer memory requirements
are modest: The Steinberg-Parks problems require less than 0.1 megabytes of
RAM. DPSKP is easily extended to bounded variables by solving the bounded-
variable version of SKPE(W) which is is just a two-constraint, bounded-variable
knapsack problem. (Dantzig [6] solves the bounded-variable knapsack problem;
Nemhauser and Ullman [18] and Weingartner and Ness [26] solve multiple-
constraint knapsack problems.) Furthermore, a bounded-variable algorithm
could be easily modified to handle the dependent (perfectly correlated) case of
SKP, problem (3).

2.2 Integer Programming Methods

The question raised and answered in this section is “Are specialized codes nec-
essary to solve the SKP?” It is shown here that SKP(W) is readily solved
using off-the-shelf integer programming tools, i.e., an algebraic modeling lan-
guage and a linear-programming-based branch-and-bound solution algorithm.

STOCHASTIC KNAPSACK PROBLEM 157

Instead of hours of programming and a fraction of a second of execution time,
solutions can be obtained with minutes of programming and a few seconds of ex-
ecution time. All of the techniques developed are actually applicable to general
problems in the form of (4) and are described as such. However, computational
testing is only performed on the Steinberg-Parks problems.

2.2.1 A Simple Linearization. One of the simplest approaches to solving
(4) via integer programming is to linearize the objective by taking its logarithm.
The appropriate linearization depends on the sign of c − µx∗: We first solve
µ̄ = maxx∈Xµx and obtain solution x . By observing that c − µx∗ and c− µ̄
have the same sign, the problem may be separated into three cases. In case
(a), c = µ̄ and x is optimal for (4). The following discussion considers case
(b) where c > µ̄; the linearization for case (c) where c < µ̄ is then a symmetric
modification of case (b).
In case (b), a logarithmic linearization yields

LIN1(b)

min
h,d,x∈X

µ̄

i=µ
¯

(log(c− i))hi − 1
2

v̄

j=v
¯

(log j − log(j − 1))dj

s.t.

µ̄

i=µ
¯

ihi = µx

µ̄

i=µ
¯

hi = 1

v̄

j=v
¯

dj = vx

hi ∈ {0, 1} for i = µ
¯
, . . . , µ̄

0 ≤ dj ≤ 1 for j = v
¯
+ 1, . . . , v̄

dj ≡ 1 for j = 1, . . . , v
¯
.

(11)

When µx = i , hi = 1 and hi = 0 for all i = i , and when vx = j , it follows
that dj = 1 for j = 1, . . . , j and dj = 0 for j > j. Although dj is allowed
to be continuous, it will be binary in an optimal solution since vx is integer,
−(log j − log(j − 1)) is an increasing function in j, and since the objective
function is being minimized.
We have formulated LIN1(b) in the algebraic modeling language GAMS [1]

and solved the Steinberg-Parks problems, for appropriate values of W , using
the mixed-integer programming solver XA [27]. We use the same Dell laptop
computer as in the previous section. The bound parameters used are µ

¯
=

158

W 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Total sec. .14 .16 .19 .12 .26 .23 .26 .47 .09 .60 .36 .36 .37 .43 .13 .22

Table 1 Solution times for model LIN1(b)

mink µk, µ̄ = c − 1, v
¯
= mink vk, v̄ = maxk vkW/wk . The problems had 122

variables although some of these were fixed. Table 1, lists the solution times
(reported as “Resource Utilization” in the GAMS output) for the Steinberg-
Parks problems for allW ∈ {3, . . . , 18} (for which µx∗ < c). Tighter bounds on
v
¯
, v̄, µ

¯
, and µ̄ can reduce the number of decision variables and speed solution

time, but we pursue this issue in the next section.
The linearization for the case where µx∗ > c is analogous to LIN1(b) and

is straightforward: The roles of hi and dj are reversed in that the hi become
continuous between 0 and 1, the dj are binary, dj = 1 implies vx = j, and
hi = 1 implies µx ≥ i. The objective function to be linearized and maximized
is (µx− c)/√vx. Initial tests with this case were not as successful as LIN1(b)
at least partially because v̄ is always larger than µ̄ and there are many more
binary variables. Rather than trying to improve this linearization for this case,
another rather different linearization is developed and tested next.

2.2.2 Another linearization. The linearization described below, for case
(c) where µx∗ ≥ c+1, uses binary variables to enumerate all possible values for
µx∗ ≥ c+1 and vx∗ ≥ v

¯
. By solving a few auxiliary problems, the enumeration

required is not burdensome, at least for the Steinberg-Parks problems. The
method is described only for case (c) but with minor modifications can also be
used for case (b).
For values of i and j such that c + 1 ≤ i ≤ µ̄ and v

¯
≤ j ≤ v̄, define the

binary variable yij to be 1 if µx = i and vx = j, and to be 0 otherwise. Also,
define ρij = (c− i)/

√
j. Then, (4) is equivalent to

STOCHASTIC KNAPSACK PROBLEM 159

LIN2(c)

ρ∗ = min
x∈X,y

(i,j)∈IJ
ρijyij

s.t.
(i,j)∈IJ

iyij = µx

(i,j)∈IJ
jyij = vx

(i,j)∈IJ
yij = 1

yij ∈ {0, 1} ∀ (i, j) ∈ IJ,

(12)

where I = {c+ 1, . . . , µ̄}, J = {v
¯
, . . . , v̄} and IJ = I × J . Like the logarithmic

linearization of Section 2.2.1, (12) requires the addition of only three structural
constraints, but the potential number of binary variables is much larger. The
required number of variables can be reduced drastically, however, by solving
a sequence of auxiliary problems to find tight values for µ̄, v̄, v

¯
, and another

bound ρ̄ ≥ ρ∗. (Any elements (i, j) ∈ IJ with ρij > ρ̄ are deleted.) The
four-part procedure described next for solving LIN2(c) has proven successful in
practice:

Step (1) Establish ρ̄ by finding a “good” feasible solution to (4): We solve
a simplification of (4) with a linear objective, minx∈X sx, to obtain x1, where
X = X ∩ {µx ≥ c+ 1} and sk = √vk − µk. Then, ρ̄ ≡ (c− µx1)/ vx1.

Step (2) Establish µ̄ and v̄: Solve maxx∈Xµx to obtain x2 and let µ̄ = µx2
and v̄ = vx2. The variance bound is valid since

c− µx∗√
vx∗

≤ c− µx2
vx2

and c− µx2 ≤ c− µx∗ < 0 imply
√
vx∗ ≤ vx2.

Additionally, if x2 is a better solution to (4) than is x1, ρ̄ is reduced to
(c− µx2)/ vx2.

Step (3) Establish v
¯
: Solve minx∈X vx to obtain x3, where X = X ∩ {µx ≥

c+ 1}. Let v
¯
= vx3 and update ρ̄ if x3 is a better solution for (4) than are x1

and x2.

Step (4) Solve LIN2(c): After the three auxiliary problems are solved and
good values for µ̄, v̄, v

¯
and ρ

¯
are established, a “tight” version of LIN2(c) is

then solved.

160

W 19 20 21 22 23 24 25 26 27 28 29 30

Step (1) sec. .07 .08 .08 .06 .08 .06 .07 .08 .09 .07 .08 .08
Step (2) sec. .08 .08 .04 .08 .09 .07 .07 .08 .09 .05 .08 .11
Step (3) sec. .08 .06 .07 .08 .10 .08 .09 .08 .08 .06 .06 .07
LIN2(c) sec. .08 .11 .06 .05 .09 .08 .11 .17 .21 .10 .20 .23

Total sec. .31 .33 .25 .27 .36 .29 .34 .41 .47 .28 .42 .49

Table 2 Solution statistics for LIN2(c) and auxiliary problems.

The four-part procedure described above was tested on the Steinberg-Parks
problems for W ∈ {19, . . . , 30} for which ρ∗ < 0. Table 2 displays the solution
times of the individual auxiliary problems and LIN2(c) for each relevant value
of W .
The auxiliary problems did make a significant difference in problem size and

solution time for LIN2(c). LIN2(c) contains from 13 to 316 variables as solved,
and total solution time never exceeds one half second. When we try to solve
LIN2(c) without the auxiliary problems (using more easily calculated bounds),
problems sizes range from 250 to 1824 variables and some run times exceed 30
seconds.
So, the IP approach yields solutions reasonably quickly and the programming

effort is minimal even though a number of auxiliary problems may need to
be solved. The approach does not really depend on the form of the model’s
constraints, so it is much more flexible than DP. However, both the IP and
DP approaches require that returns be independent normal random variables.
General return distributions with an arbitrary dependency structure are allowed
in the Monte Carlo method we develop in the rest of the paper.

3 SKP WITH GENERAL RETURN DISTRIBUTIONS

In this section, we consider (1), which for convenience we restate here as

(1)
z∗ = max

x
P (rx ≥ c)

s.t. x ∈ X,

where r is a random vector with a general distribution. Thus, r may be non-
normal and may have dependent components. In the context of the stochastic
knapsack problem with returns that are independent both between and within
item types, (1) specializes to (2) with rkl, k = 1, . . . ,K, l ∈ Lk, independent.

STOCHASTIC KNAPSACK PROBLEM 161

And, when returns are perfectly correlated within an item type but independent
between types, (1) specializes to (3) with rk, k = 1, . . . ,K, independent. We
will consider these two special cases in our computational work, but we develop
the Monte Carlo solution procedure in the more general context of (1), without
independence assumptions on the components of r.
When stochastic optimization problems such as (1) do not have a special

structure such as normally distributed returns (see Section 2), it is usually nec-
essary to resort to approximation procedures in order to solve the problem,
approximately. One common approach is to replace the “true” distribution
of the random vector r with an approximating distribution that is more man-
ageable from a computational perspective; see Wets [25, §6]. A Monte Carlo
procedure that generates independent and identically distributed (i.i.d.) ob-
servations, rj , j = 1, . . . ,m, from the distribution of r may be viewed from
this perspective: These observations (which we will also refer to as scenarios)
are the realizations of an m-point empirical approximating distribution. As we
will show, modest values of m can yield computationally tractable optimization
models that provide good approximations of SKP.
Let I(·) be the indicator function that takes on the value 1 if its argument

is true, and is 0 otherwise. With this notation,

P (rx ≥ c) = EI (rx ≥ c) = E
 1
m

m

j=1

I rjx ≥ c
 .

Thus, the approximating problem based on an empirical distribution is

Um = max
x

1

m

m

j=1

I rjx ≥ c

s.t. x ∈ X.
(13)

By observing that

z∗ = max
x∈X

P (rx ≥ c) = max
x∈X

E 1
m

m
j=1 I rjx ≥ c

≤ E max
x∈X

1
m

m
j=1 I rjx ≥ c = EUm,

(14)

we see that Um is an upper bound, in expectation, on the optimal solution
value z∗; see Mak et al. [14].
Estimates of EUm are valuable in ascertaining the quality of a feasible can-

didate solution x̂ ∈ X . We may estimate the objective value, P (rx̂ ≥ c), via

Lm =
1

m

m

j=1

I(rj x̂ ≥ c).

162

Because x̂ is, in general, suboptimal, ELm = P (rx̂ ≥ c) ≤ z∗. As we show
below, estimates of the upper bound EUm can be used to bound the optimality
gap, z∗ − P (rx̂ ≥ c).
We generate a candidate solution x̂ ∈ X by solving a single approximating

problem of the form (13). It is clearly desirable to ascertain the quality of such
a solution, and to do so we follow Mak et al. [14]. This procedure consists of
using the method of batch means to construct a one-sided confidence interval
of the optimality gap, z∗ − P (rx̂ ≥ c), by forming i.i.d. observations of

Gm = Um − Lm = max
x∈X

 1
m

m

j=1

I rjx ≥ c
− 1

m

m

j=1

I rj x̂ ≥ c .

Since EUm ≥ z∗ and ELm = P (rx̂ ≥ c), it follows that EGm ≥ z∗ −
P (rx̂ ≥ c). Hence, we may use multiple observations of Gm to construct point
and interval estimates for the optimality gap.
The upper and lower bound estimators that define Gm use the same stream

of random numbers rj , j = 1, . . . ,m; this use of common random numbers is a
well-known variance reduction technique. (See, for example, Law and Kelton
[13, §11.2] for a general discussion of common random numbers; for computa-
tional results in stochastic programming, see Mak et al. [14].) In our current
setting, common random numbers have the additional benefit of ensuring non-
negative estimates of the optimality gap, since, by construction Gm ≥ 0; this
could not be guaranteed if Um and Lm were estimated separately with distinct
random number streams. Before summarizing our Monte Carlo procedure for
approximately solving SKP, we turn to the issue of evaluating Lm and Um.
Evaluating Lm is straightforward: Given x̂, we generate rj , j = 1, . . . ,m,

and for each observation simply test whether or not rj x̂ ≥ c and compute
Lm =

1
m

m
j=1 I rj x̂ ≥ c .

To calculate Um, we convert (13) into the following equivalent IP

Um = max
x,y

1

m

m

j=1

yj

s.t. x ∈ X

rjx ≥ c yj −Mj(1− yj) ∀ j = 1, . . . ,m
y ∈ {0, 1}m.

(15)

Here,Mj > 0 is large enough to ensure that r
jx ≥ c yj−Mj(1−yj) is a vacuous

constraint when yj = 0.
The Monte Carlo Procedure for solving SKP begins by solving an empirical

approximating problem (15) with m scenarios to generate a candidate solution

STOCHASTIC KNAPSACK PROBLEM 163

x̂. Then, we use the method of common random numbers, with a batch size
of m, to construct an approximate (1 − α)-level confidence interval on the
optimality gap, z∗ − P (rx̂ ≥ c). In practice, we typically choose m larger
than m in an attempt to find a good candidate solution.

Procedure MCSKP
Input: Data for SKP with K items: w, c, W , and distribution for r. Batch
size m, sample size (number of batches) n, and size of approximating problem
to generate candidate solution, m . Confidence interval level 1 − α and zα
satisfying P (N(0, 1) ≤ zα) = 1− α.
Output: Solution x̂, approximate (1−α)-level confidence interval [0, Ḡ(n)+ G]
on the optimality gap.

{
/* Generate Candidate Solution */

Generate r1, . . . , rm i.i.d. from the distribution of r;

x̂← argmax
x ∈ X

1
m

m
j=1 I rjx ≥ c ;

/* Optimality Gap Calculations */

For (i = 1 to n) {
Generate ri1, . . . , rim i.i.d. from the distribution of r;

Gim ← max
x∈X

1
m

m
j=1 I rijx ≥ c − 1

m
m
j=1 I rij x̂ ≥ c ;

}
Ḡ(n)← 1

n
n
i=1G

i
m;

S2G(n)← 1
n−1

n
i=1 G

i
m − Ḡ(n) 2;

G ← zαSG(n)/
√
n;

Print{“Approximate solution to SKP:”,x̂};
Print{“Confidence interval on the optimality gap:”,[0, Ḡ(n) + G]};

}
The MCSKP procedure was implemented in GAMS [1] and the IPs solved

using CPLEX Version 3.0 [3]. All computational tests in this section were per-
formed on an IBM RS-6000 Model 590 computer with 512 megabytes of RAM.
Because we already know optimal solutions to the Steinberg-Parks problems,
and can perform exact evaluations of P (rx̂ ≥ c) for candidate solutions x̂,

164

W Ḡ(n) G 95% CI P (rx̂ ≥ c) z∗ CPU (min.)

10 0.006 0.003 [0,0.009] 0.014 0.014 19.4
15 0.072 0.010 [0,0.082] 0.124 0.173 26.9
20 0.052 0.010 [0,0.062] 0.549 0.588 32.7
25 0.020 0.007 [0,0.027] 0.915 0.915 25.6
30 0.025 0.005 [0,0.030] 0.978 0.995 19.7

Table 3 Results of the Monte Carlo solution procedure for the Steinberg-Parks SKPs.

Returns are normal random variables that independent between and within item types. In

these computationsm = 200 (candidate generation), m = 100 (batch size), and n = 30
(number of batches).

we can make some interesting observations regarding the performance of the
Monte Carlo solution procedure from Table 3. In two of the five cases, the x̂
found by solving the empirical problem with m = 200 scenarios is optimal. By
definition, the approximate 95% confidence interval achieves the desired cover-
age provided that z∗ − P (rx̂ ≥ c) falls within the interval. For example, when
W = 20, z∗ − P (rx̂ ≥ c) = 0.039 falls in [0, 0.062]. Table 3 indicates that the
desired coverage is achieved in each of the five cases. In fact, in each case the
optimality gap is smaller than the point estimate Ḡ(n); this is not surprising
since EḠ(n) ≥ z∗−P (rx̂ ≥ c). Because the point estimate of the gap is biased
in this manner, we tend to obtain conservative confidence interval statements
(a caveat to this, due in part to the discrete nature of the integer SKPs, is
discussed below). We note that when W = 30, the confidence interval provides
an effectively vacuous statement since the probability of achieving the target
is within 0.03 of 1. (The MCSKP procedure must be applied with some care,
if at all, when P (rx̂ ≥ c) is close to 0 or 1.)
The primary goal of the MCSKP procedure is to obtain a solution x̂ of

“high quality” and to make a probabilistic statement concerning this quality.
The procedure does not include a point estimate of P (rx̂ ≥ c) because we
regard this of secondary importance relative to obtaining an x̂ of high quality.
Of course, a point estimate is straightforward to compute, if desired.
In order to study the effect of the number of scenariosm on the quality of the

candidate solution, x̂, we took the problem with the poorest solution (widest
optimality gap) from Table 3 (W = 15) and ran the Monte Carlo procedure
for various values of m . The results are summarized in Table 4. To reduce
the variability due to sampling, the candidate-generation and optimality-gap-
estimation phases of the MCSKP procedure were, respectively, initialized with

STOCHASTIC KNAPSACK PROBLEM 165

m Ḡ(n) G 95% CI P (rx̂ ≥ c) CPU (min.)

50 0.091 0.010 [0,0.101] 0.102 25.8
100 0.091 0.010 [0,0.101] 0.102 26.0
200 0.072 0.010 [0,0.082] 0.124 26.9
300 0.040 0.010 [0,0.051] 0.159 28.2
400 0.026 0.009 [0,0.035] 0.173 32.1
500 0.026 0.009 [0,0.035] 0.173 36.8
600 0.026 0.009 [0,0.035] 0.173 43.4

Table 4 We illustrate the quality of the candidate solution generated by solving empirical

approximating problems for the SKP withW = 15 for various batch sizesm . This problem

has z∗ = 0.173. For constructing the confidence intervals we use m = 100 and n = 30.
The CPU times are for the entire MCSKP procedure.

the same seeds for generating pseudo-random variates for each value of m .
This has two effects: First, when increasing m from, say, 300 to 400 we have
simply added 100 additional scenarios to the original 300. Second, when the
candidate-generation phase finds the same x̂ for different values of m (i.e.,
m = 50, 100 and m = 400, 500, 600) the gap-estimation results are identical.
Note that m = 400, 500, and 600 all yield an optimal solution.
As Tables 3 and 4 indicate, even when the candidate-generation phase finds

an optimal solution, we still obtain confidence intervals with widths ranging
from 0.009 to 0.035. There are two reasons for this: First, there is a contribution
due to Ḡ(n) that originates from the inequality in (14), obtained by exchanging
the optimization and expectation operators. Second, there is a contribution due
to sampling error which is captured in G. Table 5 shows a decrease in both
these terms as the batch size m grows. In fact, it is possible to show that EUm
decreases monotonically in m [17, 14]. The increase in CPU times with larger
batch sizes in Table 5 (and to a lesser extent in Table 4) is due, in part, to the
IP (15) becoming larger. But, the IP optimality gap must be shrunk to a value
less than 1/m to ensure optimality, and this also results in increasing times.
As indicated in Section 1, certain systems lead to SKPs in which the returns

within (as well as between) item types are not independent. Table 6 summarizes
computational results for a variant of the Steinberg-Parks problems in which the
returns are normally distributed and independent between item types but are
perfectly correlated within each type. Because the number of integer variables
in (15) is significantly smaller than for the independent case, the computational
effort is significantly less for this model.

166

m Ḡ(n) G 95% CI CPU (min.)

25 0.075 0.020 [0,0.095] 24.6
50 0.056 0.012 [0,0.068] 26.1
100 0.026 0.009 [0,0.035] 32.1
200 0.019 0.006 [0,0.025] 41.7
300 0.010 0.004 [0,0.014] 115.2
400 0.008 0.003 [0,0.011] 208.4

Table 5 We illustrate the effect of the batch size m on the tightness of the confidence

interval by applying the MCSKP procedure to the SKP with W = 15 for an optimal
candidate solution. We use a sample size of n = 30. The CPU times include the time
required to solve the m = 400 scenario problem to find an optimal candidate solution.

W Ḡ(n) G 95% CI P (rx̂ ≥ c) CPU (min.)

10 0.000 0.000 [0,0.000] 0.090 3.2
15 0.000 0.001 [0,0.001] 0.327 6.2
20 0.021 0.007 [0,0.028] 0.561 9.2
25 0.017 0.006 [0,0.023] 0.872 5.7
30 0.016 0.005 [0,0.021] 0.973 2.8

Table 6 Results of the Monte Carlo solution procedure for SKPs with normal returns that

are independent between, but perfectly correlated within item types. In these computations

m = 200 (candidate generation), m = 100 (batch size), and n = 30 (number of
batches).

Note that in Table 6 the confidence interval width is actually 0 for W =
10 and is 0.001 for W = 15. While this may be somewhat disconcerting,
when W = 10 each of the n = 30 empirical problems (m = 100) yielded the
same solution x̂ as the candidate-generation problem (m = 200). And, when
W = 15, 29 of the 30 empirical problems generated the same solution x̂ as
the candidate-generation problem (to four digits; Ḡ(n) = 0.0003 for this case).
Such results are partly due to the discrete nature of the integer SKP and would
be less likely to occur if the decision variables were continuous, particularly if
the solutions were not extreme points of X .
Finally, Table 7 summarizes the computational results for another variant of

the Steinberg-Parks problems in which distributions of the returns are assumed

STOCHASTIC KNAPSACK PROBLEM 167

W Ḡ(n) G 95% CI CPU (min.)

10 0.003 0.002 [0,0.005] 19.3
15 0.030 0.011 [0,0.041] 26.1
20 0.057 0.015 [0,0.072] 32.4
25 0.020 0.007 [0,0.027] 26.3
30 0.014 0.004 [0,0.018] 19.4

Table 7 Results of the Monte Carlo solution procedure for SKPs with uniformly distributed

returns that are independent between and within item types. In these computations m =
200 (candidate generation), m = 100 (batch size), and n = 30 (number of batches).

to be uniform, having the same mean and variance as the normal distributions of
the original Steinberg-Parks data. Here, the returns are independent between
and within item types. In this case, both the required computational effort
and the magnitude of the confidence interval widths are very similar to that
for normally distributed returns (see Table 3).

4 CONCLUSIONS

This paper has considered stochastic integer programming problems, with de-
terministic constraints, where the objective is to maximize the probability of
meeting or exceeding a certain return threshold. We have developed three so-
lution procedures. In Section 2.1, we presented a new dynamic-programming
method for the special case of the stochastic knapsack problem with normally
distributed returns that are independent between and within item types. This
method is conceptually simple, easy to program, easy to modify for bounded
variables, and significantly faster than previously available procedures. In Sec-
tion 2.2, we described integer programming techniques with the same structure
on the random returns but with more general constraint sets. We used two
different linearized integer programs coupled with several auxiliary integer pro-
grams. These methods were tested and shown to be effective. Finally, the
Monte Carlo solution procedure of Section 3 addressed problems under very
general assumptions regarding the distribution of the vector of random re-
turns. Due to the more general problem structure, we solved an approximating
problem whose solution quality was specified only in a probabilistic sense. Nev-
ertheless, our computational results demonstrated that good solutions can be
obtained with modest sample sizes.

168

Acknowledgments

Kevin Wood thanks the Office of Naval Research and the Air Force Office of Scientific

Research for its support with this research. David Morton’s research was supported

by the National Science Foundation through grant DMI-9702217.

References

[1] Brooke, A., Kendrick, D., and Meeraus, A., GAMS: A User’s Guide, The
Scientific Press, San Francisco (1992).

[2] Carraway, R.L., Morin, T.L., and Moskowitz, H., “Generalized Dynamic
Programming for Stochastic Combinatorial Optimization,” Operations Re-
search, 37, 819-829 (1989).

[3] CPLEX Manual, Using the CPLEXTM Callable Library and CPLEXTM

Mixed Integer Library, CPLEX Optimization, Inc., Incline Village, Nevada,
1993.

[4] Carraway, R.L., Schmidt, R.L., and Weatherford, L.R., “An Algorithm
for Maximizing Target Achievement in the Stochastic Knapsack Problem
with Normal Returns,” Naval Research Logistics, 40, 161-173 (1993).

[5] Chiu, S.Y., Lu, L., and Cox, L.A., “Optimal Access Control for Broad-
band Services: Stochastic Knapsack with Advance Information,” European
Journal of Operations Research, 89, 127-134 (1996).

[6] Dantzig, G.B., “Discrete-Variable Extremum Problems,” Operations Re-
search, 5, 266-277 (1957).

[7] Dreyfus, S.E. and Law, M.L., The Art and Theory of Dynamic Program-
ming, Academic Press, New York (1977).

[8] Gavious, A. and Rosberg, Z., “A Restricted Complete Sharing Policy for
a Stochastic Knapsack Problem in B-ISDN,” IEEE Transactions on Com-
munications, 42, 2375-2379 (1994).

[9] Geoffrion, A.M., “Solving Bicriterion Mathematical Programs,” Opera-
tions Research, 15, 39-54 (1967).

[10] Greenberg, H.J., “Dynamic Programming with Linear Uncertainty,” Op-
erations Research, 16, 675-678 (1968).

[11] Henig, M.I., “Risk Criteria in the Stochastic Knapsack Problem,” Oper-
ations Research, 38, 820-825 (1990).

[12] Ishii, H. and Nishida, T., “Stochastic Linear Knapsack Problem: Proba-
bility Maximization Model,” Mathematica Japonica, 29, 273-281 (1984).

STOCHASTIC KNAPSACK PROBLEM 169

[13] Law, A.M. and Kelton, W.D., Simulation Modeling and Analysis, McGraw-
Hill, New York (1991).

[14] Mak, W.K., Morton, D.P., and Wood, R.K., “Monte Carlo Bounding
Techniques for Determining Solution Quality in Stochastic Programs,” Tech-
nical Report, The University of Texas at Austin (1997).

[15] Marchetti-Spaccamela, A. and Vercellis, C., “Stochastic On-Line Knap-
sack Problems,” Mathematical Programming, 68, 73-104 (1995).

[16] Morita, H., Ishii, H., and Nishida, T., “Stochastic Linear Knapsack Pro-
gramming Problem and Its Application to a Portfolio Selection Problems,”
European Journal of Operations Research, 40, 329-336 (1989).

[17] Norkin, V.I., Pflug, G.Ch., and Ruszczyński, A., “A Branch and Bound
Method for Stochastic Global Optimization,” Working Paper, IIASA (1996).

[18] Nemhauser, G.L., and Ullman, Z., “Discrete Dynamic Programming and
Capital Allocation,” Management Science, 15, 494-505 (1969).

[19] Papastavrou, J.D., Rajagopalan, S., Kleywegt, A.J., “Discrete Dynamic
Programming and Capital Allocation,” Management Science, 42, 1706-1718
(1996).

[20] Prékopa, A., Stochastic Programming, Kluwer Academic Publishers, Dor-
drecht (1995).

[21] Ross, K.W., Multiservice Loss Models for Broadband Telecommunication
Networks, Springer-Verlag, London (1995).

[22] Ross, K.W. and Tsang, D.H.K., “The Stochastic Knapsack Problem,”
IEEE Transactions on Communications, 37, 740-747 (1989).

[23] Sniedovich, M. “Preference Order Stochastic Knapsack Problems: Method-
ological Issues,” Journal of the Operational Research Society, 31, 1025-1032
(1980).

[24] Steinberg, E., and Parks, M.S., “A Preference Order Dynamic Program for
a Knapsack Problem with Stochastic Rewards,” Journal of the Operational
Research Society, 30, 141-147 (1979).

[25] Wets, R.J.-B. (1989): Stochastic Programming, in G.L. Nemhauser, A.H.G.
Rinnooy Kan, and M.J. Todd (eds.) Handbooks in Operations Research and
Management Science, Elsevier Science Publishers, Amsterdam.

[26] Weingartner, M.H., and Ness, D.N., “Methods for the Solution of Multidi-
mensional 0/1 Knapsack Problems”, Operations Research, 15, 83-103 (1967).

[27] XA, Professional Linear Programming System, Version 2.2, Sunset Soft-
ware Technology, San Marino, California (1993).

