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DETERMINISTIC NETWORK INTERDICTION

R. KEVIN WooD
Operations Research Department, Naval Postgraduate School
Monterey, CA 93940, U.S.A.

Abstract—Interest in network interdiction has been rekindled because of attempts to reduce the
flow of drugs and precursor chemicals moving through river and road networks in South America.
This paper considers a problem in which an enemy attempts to maximize flow through a capacitated
network while an interdictor tries to minimize this maximum flow by interdicting (stopping flow
on) network arcs using limited resources. This problem is shown to be NP-complete even when
the interdiction of an arc requires exactly one unit of resource. New, flexible, integer programming
models are developed for the problem and its variations and valid inequalities and a reformulation are
derived to tighten the LP relaxations of some of these models. A small computational example from
the literature illustrates a hybrid (partly directed and partly undirected) model and the usefulness
of the valid inequalities and the reformulation,

1. INTRODUCTION

Interest in the topic of network interdiction has been revived recently resulting from the U.S.
anti-drug effort. In particular, the U.S. Army’s SOUTHCOM, which directs U.S. anti-drug efforts
in South America, would like to best allocate its limited resources to interdicting coca, partially
processed cocaine and precursor chemicals in the South American drug producing areas [1].
Current emphasis is on interdicting the flow of precursor chemicals. Most of the traffic in these
chemicals is carried along rivers in remote forested regions and along some inter-connecting roads.
Consequently, in this situation, the interdiction problem can be viewed as a network interdiction
problem. It is the purpose of this paper to review earlier deterministic network interdiction
models, devise new solution techniques for these models, and develop new models and solution
techniques. We believe that these models may be useful when combined with simulations for
devising randomized strategies for interdicting drug and precursor chemical traffic. A subsequent
paper will investigate probabilistic and game-theoretic models.

The simplest network interdiction problem arises from the well-known max flow-min cut theo-
rem [2]. In this case, an enemy attempts to traverse from node s to node t in a directed network
while the interdictor tries to break arcs in the network to eliminate all possible paths for the
enemy. Each arc (4,j) has associated with it a resource expenditure r;; which is required to
break the arc and the interdictor wishes to use minimum total effort to disrupt all s-t paths
enemy paths. The solution to the problem is to let r;; correspond to the capacity of arc (4, ),
find the maximum flow from s to ¢ subject to the arc capacities and, using that solution, identify
the minimum capacity cut. The arcs in the minimum capacity cut are those which should be
broken to eliminate all enemy paths using minimum total effort.

One of the simplest variations on the above problem is to allow only a limited amount of
resource to break arcs so as to leave as few as possible arc-disjoint paths remaining for the enemy
to use. This paper will be primarily concerned with a generalization of this problem:

PROBLEM 1. An enemy wishes to move as much of a single commodity from node s to node ¢
in a directed network. Each arc (¢,7) has a capacity of u;; units of commodity and requires of
the interdictor an expenditure of r;; units of resource to break the arc. Partially breaking an
arc is not allowed. The problem for the interdictor is to minimize the maximum amount of flow
the enemy can push through the network along unbroken arcs where the enemy is constrained by
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the arc capacities and the interdictor is constrained to use no more than the R units of resource
available. It is assumed that all data are positive integers.

Problem 1 is very limited as stated but one of the strengths of our mathematical programming
approach will be that generalizations are easy. Some generalizations that will be considered
include multiple resources necessary to break an arc, multiple alternatives for breaking an arc
using distinct resources, multiple sources and sinks, multiple commodities which are needed in
specified proportions, and the ability of the interdictor to partially break an arc using a fraction
of the resource needed to completely break the arc.

The basic problem, with minor variations, has been studied before in [3-5]. (Related work
includes [6-10]). These works cite military applications, not drug interdiction. The approach
used in [3] requires the network to be source-sink planar so that the network’s dual can be used,
further requires the enumeration of many cuts and is not generalizable. It might be argued that
a planarity assumption is not too restrictive in practice, although, it would tend to rule out
adding air transportation arcs into the model. However, a source-sink planar network requires
not only planarity but also requires that the source and sink lie on the outer face (exterior) of the
network. This is a strong assumption, especially when a drug lab, i.e., a sink node for precursor
chemicals, is likely to be found hidden in the middle of a network of rivers and roads. Further-
more, the enumeration of cuts is an exponential process in the worst case and a methodology
based on this enumeration is unsatisfactory. The methodology used in [5] is limited in that it too
requires the network to be source-sink planar but a dynamic programming approach is employed
which avoids enumerating cuts and shows that the source-sink planar problem can be solved in
pseudo-polynomial time. Generalizations as simple as having more than one distinct resource
necessary to interdict an arc would be impossible except in very simple networks, however. (The
difficulty here is analogous to the difficulty which arises when trying to generalize the dynamic
programming solution of a knapsack problem to multiple resource constraints, i.e., exponential
growth in complexity.) The methodology described in [4] does not require planarity and a spe-
cialized branch-and-bound algorithm is developed for the problem. However, that approach uses
a very crude bounding procedure which would be difficult or impossible to generalize to multi-
ple resources, multiple commodities, multiple sources and sinks, etc. The shortcomings of the
aforementioned approaches invite a fresh look at the basic network interdiction problem.

In the following sections we first define a few terms and notation, consider the inherent com-
plexity of Problem 1 and then propose an integer programming model whose solution we claim
yields an answer to the problem. We then prove the validity of the model. Next, we describe a few
extensions and variations on the basic model and then give a computational example previously
found in the literature. Finally we consider a few open questions and make concluding remarks.

2. DEFINITIONS AND NOTATION

G = (N, A) will denote a directed network with node set N and arc set A. We will usually
refer to an arc as an ordered pair (7,j) where ¢,j € N, although we can also refer to it by its
number k. It is assumed that G contains no self loops, i.e., no arcs of the form (z,7). If A’ C A4,
then G — A’ indicates G with edges A’ deleted and if N’ C N, then G — N’ denotes G with
all nodes in N’ deleted along with all arcs incident into or from nodes in N’. It will be useful
to distinguish two nodes s and ¢ with s # ¢. Maximizing flow from s to ¢ will be the same as
maximizing the flow along an extra “return arc” (¢, s) added to A.

An s-t cutset is a partition of N into two subsets N, and N; such that s € N; and t € N;.
With respect to that cut, an arc is a “forward” arc if it is directed from a node in N, to a node
in N; and it is “backward” if it is directed from a node in T to a node in S. If each arc (¢, j) has
a capacity u;; then the capacity of the cut is the sum of the capacities of forward arcs associated
with the cut.

G = (N, A) may also denote an undirected network. For an undirected network the definition
of a cut is analogous to that in a directed network and the capacity of the cut is the sum of the
capacities of the arcs with one endpoint in N, and the other endpoint in N;. In some cases it
will be necessary to refer to an undirected arc (¢,j) € A and its representation as a directed arc
(3,7) and a directed arc (j,1) in anti-parallel. Let A’ denote the set of directed arcs (3, ) such
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that ¢ < j and (4,5) € A, and let A” denote the set of directed arcs (j,7) such that (i, ) € A’.
Thus, each arc in A is represented once in A’ oriented in one direction and is represented once
in A” oriented in the opposite direction.

In proving some complexity results we will also want to consider an undirected graph H =
(V, E) where V is the set of vertices and E the set of edges, i.e., unordered pairs of vertices. The
degree of a vertex v, denoted deg(v), is the number of edges of the form (u,v). A self loop is an
edge of the form (v,v). H is a tree if it is connected and has no cycles. If E' C E, then H — E’
denotes H with all edges in E' deleted.

3. COMPLEXITY

In this section we show that the decision problems associated with Problem 1 and two variants
are NP-complete. We will first show a simple transformation of the binary knapsack problem
(decision) to Problem 1 (decision), which are defined as follows:

BINARY KNAPSACK PROBLEM (decision). Given: A set of items K with each item k € K having
a positive integer profit u} and a positive integer weight r}, and two positive integers U’ and R'.
Question: Does there exist a subset K’ C K such that Y, p vt > U’ and 3} g i < R, e,
does there exist a set of items whose total profit is at least U’ and whose total weight is no more
than R'?

PROBLEM 1 (decision). Given: A directed graph G = (N, A) with distinguished nodes s and ¢,
positive integer capacities u; for each arc k € A and positive integer resource ry required for
deletion of any arc k € A and two positive integers U and R.

Question: Does there exist a subset of arcs A’ C A such that ), 4, 7 < R and the maximum s-
flow in G — A’ is no more than U, i.e., does there exist a subset of arcs whose deletion consumes
no more than R units of resource and which leaves behind a network with maximum s-t flow not
exceeding U?

THEOREM 1. Problem 1 (decision) is NP-complete.

ProoF. Consider a knapsack problem as defined above, which is well-known to be NP-complete
(e.g., [11]). Now create a directed network G = (N, A) with two nodes s and ¢ and for each item
k € K in the knapsack problem create an arc k € A directed from s to t with capacity u = u}
and resource requirement 7 = rj. Furthermore, define R = R' and U = ", ux — U’. Now,
suppose there exists a subset K’ C K such that ) cprup > U’ and )5, pr vy < R' Let A’
correspond to K'. Then it follows that, because of the simple topology of the network, that the
maximum flow in G — A’ is at most ), uy — U’ = U and trivially 3 ;. 4, r+ < R. Conversely,
suppose there exists a set of arcs A’ in G such that the maximum s-¢ flow in G — A’ is no more
than U and ) . 4 7 < R. Then, letting K’ in the knapsack problem correspond to A’, it follows
that 3 e up > D opue — U = U’ and, trivially, )", 4 i < R. Together with the fact that
Problem 1 (decision) is clearly in NP, this implies that Problem 1 is NP-complete. [ |

Note that Problem 1 specialized to planar networks or undirected networks is still NP-complete
since the network created in the proof is planar and could equally well have been undirected. The
proof does not, however, show that the problem is NP-complete in the strong sense. That is, the
proof leaves open the possibility of a pseudo-polynomial time algorithm for solving Problem 1. To
show that, in fact, Problem 1 is strongly NP-complete, we show that the following specialization
of Problem 1 is strongly NP-complete.

PrROBLEM 2. This is the same as Problem 1 except that interdiction of an arc requires exactly
one unit of resource. R

So in Problem 2 the interdictor just has a cardinality constraint on the number of arcs he can
break rather than a general resource constraint. The proof used for Theorem 1 does not follow
through for Problem 2 since a knapsack problem in which each item weighs exactly one unit is
trivial to solve. To prove Problem 2 is strongly NP-complete, we state the problem as a decision
problem:

PROBLEM 2 (decision). Given: Directed graph G = (N, A) with distinguished nodes s and ¢, pos-
itive integer capacities of u;; for each arc (4, j) € A, a positive integer R, and positive integer U.
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Question: Does there exist a set of arcs A’ with |A’| < R such that the maximum s-t flow in
G — A’ has value U?

We will show a transformation from the NP-complete problem “clique” [11]:

ProBLEM CLIQUE (decision). Given: An undirected graph H = (V, E) and positive integer K.
Question: Does there exist a subgraph of H which is a clique (complete graph) on K vertices?

In proving that Problem 2 is NP-complete, we will define a capacitated directed network G¥
with respect to graph H and show that there exists a set of R arcs A’ in GH such that GH — 4’
has a maximum flow of U = K units if and only if H contains a clique on K vertices. R will be
|E| - (12{) To do this, we prove several lemmas which use an intermediate construct illustrated
in Figure 1. We are given an undirected graph H = (V, E)), which, without loss of generality, has
no parallel edges and no self loops. From H we create a capacitated, directed graph G¥ = (N, A)
as follows: For each edge e € E create a node ¢, in a node set N; and for each vertex v € V
create a node j, in a node set Ny. In addition, create special nodes s and t. Now, for each edge
e € E, direct an arc in G¥ from s to i, with capacity 2 and call this set of arcs A;. Next, for
each edge e = (u,v) direct an arc in G with capacity 1 from i, to j, and direct another arc with
capacity 1 from ¢, to j,. Let this be the set of arcs A;. Finally, for each vertex v € V direct
an arc with capacity 1 from j, to ¢ and call this arc set A3. This completes the construction of
GH = (N,A) = ({s}U {t}UNL U N3, A; U A5 U A3).

GH = (N, A)

Figure 1. Illustration for proofs of LLemmas 1 and 2.

LEMMA 1. The maximum flow in G constructed from H as above is equal to the number of
vertices v € V with deg(v) > 0.

PROOF. In other words, let V; be the subset of V' containing all vertices having degree 0; then,
we wish to show that the maximum flow in GH is [V — Vp|. Suppose that H is a tree. Select an
edge e = (u,v) such that deg(v)=1. (Two such edges must always exist in a tree.) One unit of
flow in GH can be routed from s to i, to j, to t. Now delete e and v from H to create another
tree, find another edge e = (u,v) with deg(v)= 1, route another unit of flow from s to the new i,
to the new j, to t and repeat until H consists of a single edge and its incident vertices. At each
step of the process, it is possible to route another unit of flow through G¥ because the path
using arcs (s,ic), (ie,jv) and (j,,t) has not been used before. Then, with one edge e = (u,v)
remaining, we can route one unit of flow from s to i, to j, to t, and because the capacity of (s, i.)
is 2, we can also route one unit of flow from s to i, to j, to t. Since a tree has [V| — 1 edges we
have found a flow of |V| units from s to ¢ and this is obviously maximum.

Now, consider a general graph H = (V, E). Clearly, the maximum flow in GH is at most |V = V|,
since, if deg(v)= 0, it is not possible to route any flow through j, to t. Now let Hy = (Vi, Ex)
denote a connected component of H such that |Ex| > 0, i.e., deg(v)> 0 for all v € V. Since Hi
contains a tree we can route one unit of flow (and obviously only one) through each node j, to ¢
for each vertex v € V4. Thus the maximum flow in H equals | U Vi| = |V — Vo ]
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LEMMA 2. Let GH be constructed from H as above. Then, there exists a set of arcs Al C A
with |A}| = |E| - (12() such that the maximum flow from s tot in GH — A} is K if and only if G
contains a clique of size K.

PRrOOF. (<=) If G contains a clique of size K, let E be the set of edges not in the clique and
let A} = {(s,i.) | € € E'}. Of necessity, |A}| = |E'| = |E| - (1.:,’) Then, by construction, the
maximum flow in G¥ — A/ is the same as the maximum flow in GH=E', (If (s, i.) created from
e = (u,v) is deleted from GH, we might as well delete i, and edges (i, ju) and (ic, j, ), since
no flow from s to t can be routed through them. If we make all such deletions, G¥ — A’ is
transformed into GH¥ ‘E’.) But by Lemma 1, the maximum flow in GH#-%' is K, since H — E'
has K vertices with degree K —1 > 0 and |V| — K vertices with degree 0.

(=) Next, suppose that it is possible to find a set of edges A} C A; with |A{| = |E] - (';)
such that the maximum s-t flow in G — A} is K. Let E' correspond to A} and let N{ = {i. |
i¢ € N1, e € E'}. Then, by construction GH — A! has the same maximum ﬂow as GH — N{ and
GH — N| = GH-E'. Since G¥ — N} has a maximum flow of K, it follows that H — E has K
vertices v with deg(v)> 0 and |V|— K vertices v with deg(v) = 0. Therefore, H — E' has a total
of (I.f) edges (none of which are in parallel) which are incident to exactly K vertices. The only
way this can occur is if H — E’ consists of a complete graph on K vertices and |V| — K isolated
vertices. Thus, H contains a clique of size K. [ ]

THEOREM 2. Problem 2 is NP-complete.

ProoF. Problem 2 (decision) is clearly in NP. For any instance of Problem Clique with graph
H = (V, E), we will create a capacitated directed network GH such that H contains a clique on K
vertices if and only if G¥ contains a set of arcs A’ with |A’| = R such that G¥ — A’ has a maximum
s-t flow of K. To avoid the tedious details of trivial cases, we assume that |E| > 1 and K > 2.
Create GH by first creating G from H as described before. Then, replace each arc (i, j,) with
|E| parallel arcs each with capacity 1/|E| and call this arc set As. Do the same thing for arcs of the
form (jy, t) and call that new arc set A3. Then GH = (N, A) = ({s}U{t}UN,UN3, A1 UA,UA3).
Also, let R = |E| - ( ).

(<) Let E’ be the edges of E not in the clique and let A’ = {(s,.) | e € E'}. Then, |A’|=R
and, because of the similarity in structure between G¥ and G¥, it follows from Lemma 2 that
the maximum flow in GH — A’ is K.

(=) We are given a set of R arcs A’ such that the maximum flow in GH — A’ is K. If A' C Ay,
it follows immediately from Lemma 2 that H contains a clique of size K because of the similarity
in structure between G and G¥, Now suppose that A’ = A} U A} U A} where Ay U A} # 0. We
will show that the maximum flow in GH — A’ must be strictly greater than K, which implies that
A’ cannot contain any arcs from A; or A3 and the proof will be complete. Smce [ALU Ay >1,it
must be that A; — A} contains at least ( ) +1 arcs and using the same reasoning as in Lemma 2,
GH - A{ has a maximum flow of at least KX + 1. But GH — A’ can be created from GH - Al
by deleting no more than |E| — (’;) < |E| - 1 additional arcs taken from A, U Az. Each such
deletion from G¥ — A’ reduces the maximum flow by at most 1/|E|, since the capacities of these
arcs are 1/|E|. Thus, the maximum flow in G¥ — A’ is no less than K + 1 — (|E| - 1)(1/|E|) =
K +1/|E}. ]

COROLLARY 1. Problems 1 and 2 are NP-complete in the strong sense.

PRrOOF. Problem 2 is NP-complete in the strong sense since the proof of its NP-completeness
did not require any entities whose number was dependent on the numerical values u;;. Problem 1
is therefore NP-complete in the strong sense because it can be specialized to Problem 2. |

The proof of Theorem 2 uses a possibly non-planar graph so that proof does not imply that
Problem 2 is NP-complete for planar networks. Indeed, this problem can be solved in polynomial
time for “s-t planar graphs” [6]. Likewise, the proof does not imply that Problem 1 is NP-
complete in the strong sense for planar networks which is fortunate since a pseudo-polynomial
time algorithm for this problem is described in [5]. Finally, we note that if Problem 2 is further
specialized so that u;; = 1 for all arcs (4, j), the resulting problem is of polynomial complexity:

HCH 17:2-8



6 R.K. Woop

Find a minimum cardinality cut in polynomial time using a maximum flow algorithm and then
break R arcs in that cut.

4. AN INTEGER PROGRAMMING SOLUTION

In this section, we give an integer programming model which will solve Problem 1. We first
state the model and then prove its correctness starting with a formal, “min-max” formulation of
Problem 1.

The formulation of the model is:

MobpEeL 1D
min Z uij Bij,
(ij)eA
st. a;—aj+ B +vi; >0, Y(i,J) €A,
a;—a; > 1, . (1)
D> mivi <R, 2
(i.5)€A

a; € {0,1}, Vi€EN,
ﬂij)'ﬁj € {011}! V(l,j)GA.

“D” is used to denote that this model is for a directed network. Model 1D is based on a modified
dual of the max flow linear programming formulation. Essentially, an s-t cut is identified with
all a; = 1 for 7 on the ¢ side of the cut and a; = 0 for all ¢ on the s side of the cut. The value of
%ij s 1if (4, 7) is a forward arc across the cut which is to be broken; 8;; is 1 if (¢, j) is a forward
arc across the cut but it is not to be broken; and all other §;; and 7;; are 0. Thus, we see that
a cut is identified and arcs are broken in that cut so as to leave as little remaining capacity as
possible.

In order to prove that the solution of Model 1D solves Problem 1 it is possible to proceed from
the fact that the max flow problem is totally unimodular, and, conseqgently its dual is totally
unimodular (e.g., [12]). The approach taken here seems more direct, however. We need the
following lemma.

LEMMA 3. The dual of the max flow problem has an optimal solution in which all variables are 0
or 1.

ProoF. The max flow problem is

max Ty,

s.t. Zz,, Ex,.-—m,,-—O
Zx., Z:c,,—O Vie N —{s,t},
E:c,, Zz,, + x4 =0,

OSEU Sul]) V(i)J)EA)
ZTys _>_0,

where z:; corresponds to the return arc which has been added to the network going from ¢ to s.
The dual of the max flow problem is

min Z ’u.'j 0{_7',
(i,j)EA
st. ai—aj+0;; >0, V() €A, 3)
o —a,>1, (4)
6;; >0, V(i,j) €A
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Let (N,, Ny) correspond to the minimum capacity cut in G. Let a; = 1 for all i € Ny, let o; =0
for all i € N,, let 6;; = 1 for all arcs (7, 5) which are forward arcs in the cut and let all other
0;; = 0. Clearly, equation (4) is satisfied and equations (3) can be seen to be satisfied by checking
against the four classes of arcs (i, j):

(a) iEN;,J.E N,,

(b) i € Ny, j € Ny,

(c) i€ Ny, j€N,, and

(d) i € Ny, j € Ny.
Thus, this solution is feasible. Furthermore, it is optimal because the value of the objective
function equals the capacity of this cut which is an upper bound on the maximum flow, but the
maximum flow equals the capacity of the cut by linear programming duality. [ ]

We can now prove the correctness of Model 1D.

THEOREM 3. The solution to Model 1D solves Problem 1.

PROOF. A model to solve Problem 1 can be formally stated as the following min-max flow-based
model.
MobEL 2D

min max s,
vel’ =

s.t. Ez,j - sz, -2y =0, (5)
i J
Z%j"ZIj.’:O, Vie N - {st},
j j
Z-’L’tj —Zﬂfjt‘*'icu =0,
j i

zi; —uwij (1—-7;) <0,  V(,j) €A,
Tij 20, V(‘)J)GAU{(t’s)}v

where T' = {v; | 7;; € {0,1}(i,)) € 4, T jyea™i mij < R}
Now, for fixed 7;; the dual of the inner maximization problem can be taken giving the equivalent
model:

MobEL 3D
mig min ("521‘ uii(1 = %i5) 63,
s.t. o — o +9,'j >0, V(i,j) €A,
a—a; 21,
o; € {0,1}, VieN,
0:;; € {0,1}, v (i,j) € A

The a; and 6;; values can be restricted to 0 or 1 because, for fixed values of 7;;, the inner
maximization of Model 2D is just a max flow problem and Lemma 1 applies. Next, Model 3D
can be linearized by replacing (1 — 7:;) 6;; with 8;; where 8i; € {0,1} and B;; > 6i; — vi;. This
yields:

MobEL 4D

min Z w; Bij,
(i.j)eA
st. oy —aj+0; >0, V(i,5) € A,
Qp — g Z lv
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ﬂij + Yij — 0!']' 2> 0: v (i, J) € A: (6)
> mimi <R, (7
(1,j)eA

aiE{Oil}) VieN,
ﬁij:‘yi'j € {0:1}7 v (l’]) €A

Next we argue that constraints (6) can be replaced by equalities. Consider any optimal solution
in which 68;; = 0. For feasibility 8;; and 7;; can be either 0 or 1. But setting 8;; to 1 would
unnecessarily increase the value of the objective function so it must be 0. It is possible that
7;; = 1 in some optimal solution but then setting v;; to 0 creates another optimal solution
because it does not change the value of the objective function and maintains feasibility. Thus, if
6;; = 0 it may be assumed that 8;; = v7;; = 0, or equivalently, §;; + 7i; — 0;; = 0. Now suppose
that in an optimal solution #;; = 1. In that case, to have feasibility, either §;; = 1 or 7;; =1 or
both. Suppose that §;; = 1. Then, the constraint §;; + vi; — 6;; > 0 is satisfied and, if y;; = 1,
there exists another optimal solution in which v;; = 0. Thus, it may be assumed that, when
0;; = 1, either B;; = 1 or 7;; = 1 but not both, or equivalently §;; +v;; —0;; = 0. Thus, whether
6;; = 1 or 8;; = 0, we have B;; + 7i; — 6;; = 0, which implies that inequalities of constraints (6)
may be replaced by equalities.

Since B;; + vi; — 0i5 = 0, or 8;; = Bij + 715, Bij + vij can be substituted everywhere for ;;.
This eliminates constraints (6) and (8) and yields Model 1D. 1

As a final point, note that constraint (1) can be eliminated by replacing a; by 1 and a, by 0
wherever they appear.

5. EXTENSIONS AND VARIANTS

In this section, we discuss number of modifications and extensions to the basic model which
underscore the flexibility of the mathematical programming approach.

5.1. Cardinality Constraint

Problem 2, in which there is a cardinality constraint on the number of arcs interdicted rather
than a general resource constraint, can be solved by solving Model 1D in which constraint (2) is
replaced by 37 ; iy 4 %ij < R. We will refer to this model as Model 1DC.

5.2. Partial Arc Interdiction

In this scenario, we assume that by applying f;jr:; units of resource to arc (7, j) where 0 < fi;
< 1, we can reduce the capacity of the arc to (1— fi;)u;;. Create Model 2P for this problem which
is the same as Model 2D except that I' = {;; | 0 < vi; < I¥(3,§) € 4, 2 jyeamii%si < R}

Then, making transformations analogous to those used to develop Model 1D, we obtain:
MobEL 1P

min E u;j ﬁ,’j,

(ii)eA

st. a;—aj+ B +vi; 20, vV (i,5) € A,

ap—a, 2> 1,

> omimi <R

(.j)ea
wef{01), VieN,

0 <7y <1 v (i,j) € 4,
0 < Bij <1, V(i,7) € A
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5.8. Multiple Sources and Sinks

The standard way to handle multiple sources and sinks would be to create a super-source s and
connect it to the individual sources s’ € N with infinite capacity, unbreakable arcs and to create
a super-sink ¢ and connect the individual sinks ¢ € NT, to it with infinite capacity, unbreakable
arcs. However, the fact that these arcs are unbreakable and have infinite capacity implies that in
the optimal solution the super-source will be on the same side of the optimal cut as the individual
sources and the super-sink will be on the same side of the cut as the individual sinks. Thus, we
know that ay = 0 for all s’ € N5 and ay = 1 for all t € NT. Therefore, Model 1D can be
modified to handle multiple sources and sinks by eliminating constraint (1) and substituting a 0
for every o, such that s € NS and substituting a 1 for every ay such that ¢/ € NT.

5.4. Undirected Networks

Next, we consider the analog of Problem 1 for undirected networks. We use the following
proposition.

PROPOSITION 1. The max-flow min-cut theorem holds for undirected networks as well as directed
networks.

The min capacity cut identification model for an undirected network can be most succinctly
stated using A’ and A” as defined with respect to an undirected network G = (N, A) in Section 2:

min E ugj 05,

(i,j)eA’
st. a;—aj+6; >0, v (i,5) € A,
st. aj—a; + 0,',' >0, v (i,j) € A’,

o —a, > 1.

It is easy to verify that, associated with the min capacity cut (N,, N;), there is a feasible solution
to the above model in which o; =0 foralli € N,, o; = 1for all i € Ny, 6;; = 1if i € N, and
J € Nyor j €N, and i € Ny, and otherwise 6;; = 0. Furthermore, the value of the objective
function equals the capacity of the cut. That this solution is optimal follows from Proposition 1,
the fact that the dual of the above model is a max flow model for an undirected network:

max T,
z
s.t. Z L5 — Z Zjs — T2y = 0,
ii(s,j)EAUAY 7:(j,s)EATUAY
E Zij — Z zji =0, VieN - {s,t},
j:(i,j)eAva” ji(df)eA'vAY
Ly — Z Tir+ &y = 0,
F(ti)EALAY JiG)EALAN

zij +zji Suy, V() e,
zi; 20, Y (i,5) € AU A" U{(t,5)},
and duality. This all leads to the analog of Lemma 1:

LEMMA 4. The dual of the max flow problem for undirected networks has a solution in which
all variables are 0 or 1.
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The solution to Problem 1 for undirected networks can be found by solving the following min-
max model:

MobEeL 2U
min max s,
vel' =
s.t. Z T, — Z zj, =0,

Ji(s,)EATVA" j:Gs)eAua”

Z Ty - Z zj; =0, Vie N - {s,t},
j:(ig)eArvar j:ii)eA’var
Yo omi— ), =0,
ot )EAUAY Fi(G)eA'uAn
zij + x50 — ui;(1 — 735) < 0, V(i j)eA,

z; 20, V(7)€ AuAl’"u{(t,s)},

where T' = {v;j | vi; € {0,1} V (4,5) € 4', 1; j)ear 7ij %5 < R}. Following a similar set of
transformations and using Lemma 2, Model 2U is seen to be equivalent to the simple minimization

problem:
MobEL 1U
min )" wjfBi,
(i.)ea’
st a; —aj + B +%; 20, Y (i,j) €A,
aj"ai+ﬂij+7l'j207 V(i,j)EAl,
Qp = Oy 2 11 (9)
> mjmi <R,
(j)ea’
a€{0,1}, VieN,
Bij» vi; €{0,1}, V(i,j) € A"

5.5. Multiple Resources

Problems with multiple resources might occur in two cases. In the one case, we require multiple
resources to interdict an arc where interdiction of arc (¢, 7) requires ryj; units of resource I for
each resource | € L, and there are a total of R; units of resource ! available. In this case, in
Model 1D, equation (2) is simply replaced by the set of equations

E rijivi; < Ry, vielL.

(1.4)eA

(10)

It should be noted that if some of the r;;; values were negative (suppose by interdicting some arcs,
we actually capture some of the enemy’s supplies) the substitution used in going from Model 4D
to Model 1D would not be valid. In that case, it would be necessary to use a model of the form
of Model 4D and replace equation (7) with equations (10).

In another case, it might be that the interdictor has multiple independent resources which can
be used to interdict an arc. For instance, three different types of aircraft might be available to
attack an arc and exactly one of the types of aircraft will be assigned to interdict the arc or none
will. For this case, Model 1D can be replaced by

min E u,-,- ﬂ,’j s

(i)eA
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st ai—aj+Bi+ Y %ij 20, V(ij) €A,
1
ay —a; > 1,
Z rij1viji < Ry, Viel,
(i4)ea

o; €{0,1}, VieN,
ﬂij,E{O,l}, V(i,j)GA,
7‘j‘€{0v1}» Y(i,j)eA leL,

where 7351 is 1 if arc (7, j) is interdicted with resource I and is 0 otherwise, and, as above, R; is
the amount of resource [ available.

5.6. Multiple Commodities

Here we consider a situation in which multiple commodities measured in the same units, such
as kilograms, are being sent through the network and are of value to the enemy only in specified
proportions. For instance, suppose it requires 100 kilograms of chemicals to process 1000 kilo-
grams of coca leaves. Then, if 100 kilograms of chemicals are sent through the network along
with 2000 kilograms of coca leaves, the enemy obtains the value of only 1000 kilograms of leaves.

Let b denote the number of units of commodity k which the enemy requires at the sink node
to obtain one unit of benefit, and let z;;; be the amount of flow of commodity k across arc (%, ).
The min-max problem faced by the interdictor is then
MobEeL 2MC

min max v,
Y€l =zv

st. v—bylzy 0k <0, VE,
Zzskjk - ij”;k = Ltpspk = 07 V ks
j i

Ez;jk—z:cj;k=0, Vie N —{s,t},
b J
Z-’Bm‘k = Zi'jt;‘k tZoae=0, VEk,
j j
domie—wi(1-7) S0, V(i) €4,
k
Tijk Z 07 v (1)j) € AU {Uk {(tk’sk)}}’

where ' = {y;; | 7; € {0,1}V(4,5) € A, 32(; jea™ii vij < R}. The above problem definition
allows for s and ¢ to vary by commodity. For instance, there may only be one sink node ¢ where
the commodities are combined but the sources of the commodities may all be different. If all the
sources were the same and all the sinks were the same the problem simplifies: The interdictor
solves the single commodity problem, the enemy finds the maximum single commodity flow in the
interdicted network, and then splits that flow among the commodities in amounts proportional
to bx:/ Y, b for each commodity ¥’
Taking the dual of the inner maximization problem of Model 2MC yields

MobEeL JMC

min min ui; (1 — 7i;)0i5,
T @ Gea
s.t. aip —ajp +0;; >0, Yk, (i,5) € A,

g, — o, — b,:luk >0, Vk,
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OIiIcZO, VklieN!
6;; > 0, V(i,45) € A

Given an upper bound 5;,- on 6;; allows the above model to be linearized yielding the mixed
integer problem:

MobEL 4MC
min Y w; By,
(i.)ea
s.t. aip —ajr+6; >0, Yk, (3,7) € A,
ok — ok — b5 e 20, Vk,
Bij +8:jvij — 6 > 0, Y (i,5) € 4,

ZVk < 1)
k

> mimi <R,
(.)€A
oijv Igij Zoi V(Z)J)GA:
v; €{0,1}, V(i,j) €4,

(Note that the interpretations of the «, § and 7 variables given for Model 1D are not valid here
since these variables are continuous.) In order to determine a suitable value for 8;; for a given v;j,
note that ;; is the dual variable on the constraint

Y mik < wii(l- ),

k

in Model 3MC. If the right-hand side of this equation were increased by one unit, the maximum
change in the objective function would occur if this allowed one additional unit of commodity &’
to flow through the network where &' = argmax{b; '} and this allowed v to increase by b;,! units
of benefit. Thus, Model 4MC is valid if 8;; = max;{b;'}. We would use this model to solve the
multicommodity variant of Problem 1 since there is no analog of Model 1D for this variant.

6. STRONGER FORMULATIONS

In this section, we describe valid inequalities to help tighten the LP relaxation of the basic
Models 1D and 1DC and a stronger reformulation of Model 1D based on cutsets. (We note that the
reformulation can be interpreted as introducing additional types of valid inequalities to Model 1D
but it suffices to view the process as a reformulation.) Initial computational experience on
Model 1D [1] indicates that fairly large problems can be solved without the need to introduce cuts
or valid inequalities. However, experience has shown on a variety of combinatorial optimization
problems, e.g., [13], that as the problems become larger and harder to solve, valid inequalities
become quite useful. Thus, in anticipation of solving larger problems, we discuss two types
of valid inequalities. The first type of inequality, useful for Model 1DC, is derived as a Chvatal
inequality [15] with a strengthening step added. The second type of inequality, for Model 1D, is a
standard knapsack inequality, e.g., [14]. The usefulness of these inequalities and the reformulation
is demonstrated in the next section which gives a numerical example.

6.1. Type I Valid Inequalities (Model 1DC)

Consider first Model 1DC which has a cardinality constraint on the number of arcs which
can be broken to minimize the maximum flow. Consider a node # and a maximum set of arc
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independent paths P from ¢ to . Assume that |[Py| > R and let Ay be the set of arcs on the
paths Pjs. Then the following “Type I inequality” is valid:

(IRll —-— R) o 4 Z ﬂt'j 2 IP,-II — R. (11)
(5.4)EAy

If #/ is on the t side of the optimal cut so that a;s = 1 the constraint is redundant. However, if
¢ is on the s side of the cut so that o/ = 0 the constraint simply implies that at least |P;/| arcs
among the paths will cross the cut and since at most R of those crossing arcs can be broken,
at least |Pi| — R will not be broken, i.e., at least |Pis| — R of the §;; for (,7) on those paths
must have value 1. This inequality will cut away a fractional solution (i.e., it is violated by the
solution to an LP relaxation of Model 1DC) if node i’ can be chosen so that o < 1, |Py| > R
and B;; = 0 for all (4, j) € Ay, Such a situation, if it exists, can be found in polynomial time by
finding a maximum flow from i to ¢ in G where the capacities of arcs are 0 if ;; > 0 and are
Lif Bi; = 0. However, there may also exist violated inequalities in which not all 8;; are 0 and
these would be harder to find; an integer program could be devised to find them but this might
be as hard as the original problem. It is theoretically easy to generate all type I inequalities a
prior: using a maximum flow algorithm coupled with an enumeration mechanism which would
force an arc to be in a maximum flow or not. However, the number of these inequalities may be
exponential in the size of G since there can be an exponential number of maximum cardinality
arc independent paths from any node ¢ to t.

The type I valid inequality can be derived as in [15], i.e., by adding multiples of constraints
together and then rounding coefficients to integers, although we add a strengthening step at the
end. The constraints of Model 1DC can be written as

a; —aj + Bij + v > 0, V(i,j) € 4, (12)
a, =0,
ar = 1,
- Z Yij Z _Ra (13)
(i.4)eA

a; € {0,1} VieN,
ﬂija')’ij € {011} V(i’j) € A
As above, select a node 7’ and a set of paths P, with arc set A; and such that |Py| > R. With

multipliers of 1~ ¢ for € sufficiently small and positive add together all constraints of the form (12)
for (i,7) € Ay together with constraint (13). This yields the redundant constraint:

=) |Pilas = (1= [Pulos+ Y. (1-6)Bij— Y. (=€ >—(1-¢R.
(i,4)EAy (i.4)gAn :
Noting that a; = 1 then yields
A= Pulas+ Y, (1=B;— D (1-€y; = (1=e)(|Ps| - R).
(i4)EAy (5,5)€A

In a standard fashion, then, all coefficients on the left-hand side can be rounded up to integer
values while maintaining validity of the inequality. Then, since the left-hand side is integer in an
optimal solution the right-hand side can be rounded up to the nearest integer yielding:

|Polais+ Y Bij > |Pul - R. (14)
(1.j)eA;

If i = 0 in an optimal solution the coefficient on a; is irrelevant. On the other hand, if oy =1
constraint (14) is redundant and remains so if the coefficient on a;/ is decreased to |P;» — R| which
yields the type I inequality (11). This inequality is clearly stronger than (14).

HCH 17:2-C
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The type I valid inequality can be extended to Model 1D where equations (13) are replaced by

- Y rmi 2 -R. (15)
(i.5)eA

However, in forming the inequality, a good choice for the multiplier on constraint (15) is not
obvious. Rather than pursuing this subject, we consider completely different inequalities for
Model 1D.

6.2. Type II Valid Inequalites (Model 1D)

Considering constraint (2) alone in Model 1D, it is clear that any valid inequality for a knapsack
problem defined on that constraint is valid for the full model. Following the development in [12]
suppose that A’ C A is such that Z(i,j)eA' ri; > R but E(i,j)eA" ri; < R for any A" C A,
Then, A’ is a minimal independent set. The extension of A’, denoted E(A’) is defined by E(A’) =
A'U{(#,j') e A— A" | rpji 2 ri; Y (i,5) € A'}. Then, for any minimal independent set A’, the
following inequality is valid for Model 1D:

Z rij%i; < |A| - 1. (16)
(i.§)EE(A")

We refer to this inequality as a type II valid inequality. The reader is referred to [12] for a
discussion of other types of knapsack inequalities which could be applied to Model 1D.

6.3. A Cutset-Based Reformulation (Model 1D)

Here we discuss a cutset-based reformulation of Model 1D. If all cutsets in graph G were
enumerated and there were not too many, solution of Model 1D would not be trivial but it would
be relatively easy: Let AC be the set of forward arcs in cutset C'. Solve the knapsack problem
on each cutset

max ) wij %,
(i4)eAC
s.t. E ri; 7 < R,
(ii)eAc
Yij 6{011}) V(zyJ)GACv

to obtain solution ¥ and define remaining capacity to be US = Z(i,j)e ac(1— 7g)u.~j. Then,
the optimal cutset is that cutset which has the minimum value of U€ and the optimal arcs to
break are those arcs (i, j) such that v = 1.

To obtain cutset-based valid inequalities for Model 1D, however, we need to develop a cutset-
based, mathematical programming formulation of the model. Letting C denote the set of all s-t
cutsets in G, the following formulation is probably the most obvious:

min Y wi; Bij,

(i.j)eA
st. zc — 715 — Bi; <0, Y (i,j) € A°, (17
Z e = lv (18)
Cec
Z rij vi; S R,
(44)eA

7ijyﬂij € {0) 1}1 V(ir]) € 4,
zc € {0,1}, wWC e,
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where v;; and B;; are defined as before and z¢ = 1 if C is the optimal cut and otherwise,
z¢ = 0. The difficulty with this formulation is that it is not possible to write down a simple,
useful relaxation of it. If constraint (18) is deleted the optimal solution is 0. If constraint(18) is
included but constraints (17) are deleted for some C, the optimal solution is also 0. The following
formulation, called Model 1C, avoids this problem.

Model 1C uses 7;;, fB;; and a; defined as in Model 1D. With respect to a cutset C, let N
denote the nodes on the s side of the cutset and let N denote the nodes on the ¢ side of the
cut. New binary variables 6 and §¢ are defined so that 6 = 0 and 6 = 1 if and only if C
is the optimal cutset. Finally, let RC denote the amount of resource consumed in the solution
to the knapsack problem defined with respect to cutset C, let Af;v be the set of arcs (7,j) such
that v;; = 1 in that knapsack solution and let Ag be the set of arcs (i, ) such that §;; = 1in
that knapsack solution. The reformulation is

MopEL 1C
min Y w; By,
(1,j)eA
st o —aj +Gi; +7; 20, V (i,7) € 4,
65— ) ai <0, vCec,
ieNS
87— Y ;> -INF|+1, VCEeC,
JENE
6?’_666'_7‘,130’ V(l,])EAs, CEC,
8§ — 87 ~ i <0, V(i,j) € 4§, Cec,
D mimi+ ) (R—R°)6 - Y (R-R°)67,<R,
(i.j)eA cec cec
a, =0,
ap = 11

All variables € {0,1}.

Note that the model has been formulated so that it is valid even if C is replaced by some subset
of C. In fact, if C = 0 the model reverts to Model 1D.

To see that the formulation is stronger than Model 1D (we do not prove it in general) consider
a solution (y*,8*,a*) to the LP relaxation of Model 1D in which all variables are optimal to
the integer program (IP) except one ﬂ{,j, and the paired v}, are fractional, i.e., the LP solution
would be optimal to the IP if vi:;:* were forced to 0 and f;;;, were forced to 1. Such solutions,
in which the optimal cut C* is identified but not proven optimal, can and do occur in practice.
In one of these LP solutions the resource constraint will be tight although it will be slack in the
solution to the IP. Because of this, if Model 1C is formulated with C = {C*}, it is easy to see
that the LP solution will not be feasible (the modified resource constraint will be violated) for
the new formulation and thus Model 1C is stronger than Model 1D.

7. A NUMERICAL EXAMPLE

In this section, we compare our methodology to that of [4] using the example given in that
paper. The test network, which we denote G = (N, A), is given in Figure 2 and the capacity
and resource necessary to break each arc is given in Table 1. A total of 15 units of resource is
available for interdicting arcs. ,

G is undirected and it has multiple sources N = {1,2,3,4} and multiple sinks N7 =
{12,13,14}. We use a hybrid of Models 1D and 1U to solve this problem with a; replaced
by 0 for all i € N¥ and o; replaced by 1 for all i € NT.

Let A be partitioned into Asr and Agr where Agr denotes those arcs incident to a node in
N¥ or NT and Agr denotes the complementary set. Arcs in Agr may be replaced by directed
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(l indicates j is a source node, 7 indicates j is a demand node.)
Figure 2. Sample network.

Table 1. Network data.

Arc Capacity Resource Arc Capacity Resource
(1,5) 60 5 (6,9) 120 4
(1,8) 70 4 (6,10) 150 6
(1,6) 60 5 (7,10) 120 6
(2,5) 50 3 (7,11) 80 4
(2,6) 50 3 (8,12) 80 4
(2,7) 60 5 (8,13) 50 5
(3,6) 100 3 (9,12) 100 5
(3,7) 80 5 (9,13) 80 4
(4,6) 50 5 (10,13) 180 6
(4,7) 100 5 (10,14) 100 4
(4,11) 80 4 (11,13) 80 5
(5,8) 60 4 (11,14) 100 6
(5,9) 60 7

arcs: There need not be any flow into a source node so any arc (i, ) with i € N5 may be replaced
by a directed arc (4, j); likewise, any arc (i,5) with j € NT may be replaced by a directed arc
(3,7). Let Ay be defined from Agr as A’ is defined from A.

The model we solve then is

min Z U5 ﬂij’
(1.4)EAL VAL, ‘
st o —a; + ﬁ,‘j + 7ij v (l,]) € AgT!
Q; — oy +ﬂ!]+7l] >Ov V(‘:J)EAQ'TW
o; — o + Bij + 7 V (4, 4) € Ay,
a; =0, Yie NS,
o =1, vie NT,
Z rij%ij < R,
(i.))eAs VAL,
a; € {0,1}, Vi€EN,
Bij, vij € {0, 1}V, V(i,j) € Al
The data in Table 1 yields a model with 31 constraints and 43 variables. The network allows

720 units of flow if no arcs are interdicted. The optimal solution to the problem was obtained
using the branch-and-bound algorithm within LINDO [16] and required eight branches versus the
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sixteen required by Ghare et al. The initial LP relaxation has a value of 320 while the optimal
solution, obtained on the third branch, has 340 units of flow remaining. The interdicted arcs are
(6,9), (10,13), and (10, 14), while the unbroken arcs which define the minimum capacity cut are
(1,8), (1,5), (2,5), (4,11) and (7,11).

As asserted in the previous section, the solution to the LP relaxation of the above problem
might be all integer, except for one f;; and its cohort ;; being fractional. The «; in this instance
would all be 0 or 1 and identify a cut which might be the optimal cut. Such is the case for this
problem. Adding inequalities of type II and reformulating the problem based on the identified
cut results in an improvement in the value of the LP relaxation to 328.3. The branch-and-bound
algorithm then requires 3 branches to solve the problem optimally.

To test inequalities of type I, the resource constraint in the above problem was replaced by a
cardinality constraint. However, the solution to the LP relaxation of this model is integral and
solves the IP irrespective of what integer value for R is used. Consequently, it was necessary to
modify the u;; until a fractional LP solution was found; a value of R = 3 was used. Evaluating
the LP solution yielded a type I inequality based on four arc-independent paths running from
node 9 to the sink nodes. The LP relaxation of the model proved to be integer optimal after
adding this one inequality. :

8. CONCLUSIONS

This paper has described a simple network interdiction model and its variants in which an
interdictor, using limited resources, interdicts arcs in a capacitated network so as to minimize
the maximum flow that can be pushed through the network by an adversary. The basic problem
is shown to be NP-complete even when the interdiction of an arc requires exactly one unit of
resource. A new integer programming model is developed for the basic problem and is shown to
be easily modified and extended to handle variants and generalizations of this problem. This is
in contrast to the methods previously known which cannot handle any generalizations such as
multiple resource constraints or are restricted to planar networks.

In anticipation of solving large network interdiction problems, valid inequalities were developed
to tighten the LP relaxation of the integer programming models. A cutset-based reformulation of
the problem was also developed. A small computational example illustrates the use and flexibility
of the basic model and shows that the valid inequalities and the reformulation can achieve quicker
solutions.
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