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The processes by which certain classes of toxic compounds or their metabolites may react
with DNA to alter the genetic information contained in subsequent generations of cells or
organisms are a major component of hazard associated with exposure to chemicals in the
environment. Many classes of chemicals may form DNA adducts and there may or may not
be a defined mechanism to remove a particular adduct from DNA independent of replica-
tion. Many compounds and metabolites that bind DNA also readily bind existing proteins;
some classes of toxins and DNA adducts have the capacity to inactivate a repair enzyme and
divert the repair process competitively. This paper formulates an intracellular dynamic
model for one aspect of the action of toxins that form DNA adducts, recognizing a capacity
for removal of those adducts by a repair enzyme combined with reaction of the toxin and /or
the DNA adduct to inactivate the repair enzyme. This particular model illustrates the
possible saturation of repair enzyme capacity by the toxin dosage and shows that bistable
behavior can occur, with the potential to induce abrupt shifts away from steady-state
equilibria. The model suggests that bistable behavior, dose and variation between individuals
or tissues may combine under certain conditions to amplify the biological effect of dose
observed as DNA adduction and its consequences as mutation. A model recognizing
stochastic phenomena also indicates that variation in within-cell toxin concentration may
promote jumps between stable equilibria. © 1997 Society for Mathematical Biology

1. Introduction. This paper formulates a simple generic mathematical
model for one aspect of the action of toxins that bind to DNA, react to
interact with a repair enzyme and are removed within cells. It is an
intracellular dynamic model that describes a process of formation of DNA
adducts when there is a capacity for removal of those adducts from the
DNA by a repair enzyme. Many compounds and metabolities that bind
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DNA also readily bind existing proteins; some classes of toxins and DNA
adducts may inactivate the repair enzyme and subvert the repair process
competitively (Chae ef al., 1994; Lijinsky et al., 1994; Mineura ef al., 1994).
This particular model illustrates the possible saturation of repair enzyme
capacity by the toxin dosage and shows that bistable behavior can some-
times occur, inducing abrupt shifts between two possible steady-state equi-
libria. The bistable behavior, dose and variation between individuals or
tissues may combine under certain conditions to amplify the biological
effect of dose, observed as DNA adduction. Models recognizing stochastic
phenomena are also discussed; stochastic variation in within-cell toxin
concentration can promote jumps across stable equilibria, as shown later.

The correct replication of a cell and its DNA is essential to the differen-
tiation and maintenance of populations of cells within tissues and ulti-
mately within host individuals, e.g. those making up a human population.
Individual diploid human cells contain approximately 6 x 10° DNA base
pairs comprising about 10° genes (Burkhart, 1995). Risk assessment tech-
nology and practice benefit from insight provided by biologically based
mechanistic models. The adduct/removal model presented here focuses
only on one part of a complex intracellular process. Ultimately, models are
required that describe the dynamics and effects of dose, cell surface
recognition /transport, intracellular DNA /protein interaction, repair,
detoxification and clearance. At each step there is potential for a cell to
control, modify or possibly succumb to exogenously originating threats from
toxic chemicals or their metabolities. Modification may also arise from
interaction within cell populations through the action of exogenous signal-
ing compounds. These interactions are to be the subjects of subsequent
investigation.

2. Intracellular Model of Damage and Repair. Chemical or radiological
environmental stress agents may induce DNA damage as a lesion,
such as a single or double DNA strand break, or oxidative- and hydroxyl
radical-induced changes in structure. Damage also takes the form of
an adduct, where reactive chemical groups may chemically react with the
purine /pyrimidine structures of DNA to disrupt hydrogen bond pairing or
the action of polymerases (Singer, 1985; for review, see Board on Environ-
mental Studies and Toxicology, 1989). The adducted DNA, if not repaired
by removal of the alkyl or aryl group may result in an altered DNA
sequence (mutation) that is passed on to subsequent daughter cells. De-
pending on the site (gene) that is mutated, many biological outcomes are
conceivable (Michaelson, 1993). If the event contributes to abnormal cell
cycle regulation, such that the cell becomes a candidate for entry into the
carcinogenic process, the interaction is of particular interest.

The most frequently described adducts are methylated or ethylated
nucleotides generated by direct alkylating agents (Bronstein et al., 1992;
Pegg, 1990). These provide examples of the importance of the process in
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terms of mutation and of the potential for biological variation between
tissues and individual to have profound effects on the mutagenic/carcino-
genic outcome (Fox and Margison, 1988; Bronstein ez al., 1991). Many toxic
compounds are also likely to bind intracellular proteins, including those
involved in the removal of an adduct from the DNA. There also may be a
“suicide” reaction wherein the repair enzyme becomes inactivated and is
thus removed from the population of molecules available for subsequent
use by the cell in DNA repair (Hora et al., 1983; Pegg and Byers, 1992).

DNA adduction is one case among several possibilities, but it serves to
motivate formulation of the generic mathematical models to follow. These
are simplified extensively, but do capture some of the essentials of an
adduct formation—repair /removal process in the presence of a toxic chemi-
cal and repair enzyme. Examination of the result of the model then
suggests questions concerning system dynamics that are relevant to other
intra- and extracellular processes and to risk assessment. These must
ultimately be answered by appropriate experiments.

2.1. Deterministic mathematical model. Suppose the cell in question is
viewed at time ¢, where ¢ is measured from cell division. To be specific let it
be a stem cell, possibly in the spleen (cf. Alberts et al., 1994), so during time
t the cell may have produced a number of daughter cells, while itself
remaining alive.

We initially write a deterministic kinetic model to represent the system,
utilize the following notation: A(¢) is the (mean) number of adducts
present on the DNA of the cell, R(¢) is the (mean) number or concentra-
tion of repair enzyme, e.g. alkyl DNA transferase, present in the cell interior
and T(r) is the concentration of the toxic chemical or activated metabolite
thereof simultaneously present in the cell, all at time ¢. These quantities
are stipulated to satisty the following differential equations:

dA(t)
wdduct omaion 0TIl e nopeanmat
(DNA transferase)
dT(t)
= 1) ~ 8T ~ g ROTW) ,  (22)
dt —_
toxin input toxin removal; toxin removal;
to cell interior other agents binds with
“suicide repair enzyme”
dR( t ) _ (DNA transferase)
— = B(R—R(1) — 8;R(1)
dt —_—

enzyme removal;
life-in-cell effect
or “turnover”

— pr R AW) — pprR(T(2) . (2.3)

enzyme removal enzyme removal;
by adduct repair binds with toxin

enzyme creation
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These equations exhibit the possible double amplification effect of a toxin
on adduct formation: first, the toxin contributes to the rate of adduct
formation in accordance with rate parameter A, (see (2.1)); second, it is in
competition for the repair enzyme, thus depleting the enzyme’s level, in
accordance with the rate parameter g, (see (2.2)). The expression &;7(¢)
in (2.2) includes loss of toxin as a result first of its removal during adduct
formation as in (2.1); second, because of normal cellular processes such
as detoxification or binding to DNA and proteins. Both a cell DNA
adduct—enzyme product and a toxin—enzyme product may be induced; one
example among many is the binding of benzylguanine to the alkyl DNA
transferase (Chae et al., 1994).

The specific enzyme creation term incorporated in (2.3) is biologically
plausible in that, without toxins and adducts, it expresses the long-run
steady-state enzyme concentration as R(«) = RB/( B+ 83), relaxing expo-
nentially to that level if perturbed; the rate of creation never exceeds
B* = BR. An alternative could be of the form g(R(¢)) = B*/[1 + x(R(2))*],
for k, p positive; i.e. a Michaelis—Menton ( p = 1) or Hill (p > 1) function.
Of course all parameters are, realistically, susceptible to individual between-
cell variation, and the actual dependence on toxin level might well depend
on past history in a manner more complex than is represented by (2.1)—(2.3).
For the present all parameters will be treated as constants. One aim of our
modeling is to expose unexpected effects and sensitivities, and some such
are revealed even for the present simplified setup. All assumptions made
are hypothetical artifacts of the model until verified empirically, but may
serve to suggest particular experiments.

3. Steady-State Solution. Suppose all parameters and the rate of toxin
input 7. are temporarily assumed to be constants. If there is a long-run
steady-state solution for ( A(¢), T(t), R(¢)), then it satisfies the non-linear
algebraic equations obtained by putting the derivatives equal to zero. In the
present case steady-state solutions are obtained by solving the derivative =
zero (2.1) for A in terms of R, (2.2) for T in terms of R and finally putting
these into (2.3). The result is

Ao MTe
+
Sam+ HraR  (B7+ ppr R84y + praR)

BR=(B+8)R+ pg,

_MrrTcR (3.1)
87+ mpr R '

After multiplying out by the denominator there results a cubic equation for
the fixed points which are the appropriate solutions of (3.1). Although
parametric solutions can be found for (3.1) it will not be easy to extract
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general qualitative information from them; see the Appendix. A straightfor-
ward alternative is to introduce hypothetical biologically plausible parame-
ters and to solve the differential equations (2.1), (2.2) and (2.3) numerically;
this has been done in some trial cases.

Alternatively, important qualitative information can be obtained from
the formula (3.1), written as follows:

Ao Mg 4 Tc MrT
Oum+ 1raR 87+ mgrR

B(R—R) = 8RR+

n M7 g R
(6T + “‘RTR)( Sam+ /'LRAR)

(3.1a)

or
I(R)=r(R) =r(R) +r,(R) +r;(R).
Graph the left-hand side of the above expression as a function of R,

written /(R) = B(R—R) vs the right-hand side, r(R)=r(R) +r,(R) +
ry(R), where

ri(R) = 8;R,
r.(R) = Ao Hg 4 Tc MRt

2 Sum+ mraR 87+ pgrR ’
r(R) = MTc g R

’ (87 + prr R) (8,0 + g 4R) |

Points of crossing are candidate solutions. Note the possible qualitative
configuration of the above components as shown in Fig. 1. Now if the
right-hand side components are summed, the qualitative possibilities may
emerge (depending upon parameter values) as shown in Fig. 2. The curve

Figure 1. Terms of cubic equation.
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Figure 2. Possibilities of real solutions of cubic equation.

crossings, at values R, and R, in Fig. 2, actually represent local equilib-
rium points; cf. Beltrami (1987) and Strogatz (1994). It is conjectured (and
has been verified numerically in trial cases by examination of eigenvalues
for the linearized system, using MATLAB) that in case the oscillating
behavior of r(R) occurs as shown, the value R, in Fig. 2a, R, and R, in
Fig. 2b and R, in Fig. 2c are all local stable points near which R(z) will
tend to reside as ¢ increases, provided the starting level is near one of these
values. If toxin dosage to the cell 7. is low, this is consistent with a
relatively high level of enzyme; see formulas r,(R) and r4(R) in (3.1a) and
Fig. 2a. If 7 is high, this is consistent with relatively low ambient enzyme
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(Fig. 2c). The intermediate equilibrium point in Fig. 2b is presumably
always locally unstable. Figure 2b suggests the existence of o such stable
points: R, and R, . If the enzyme level starts near one of these, it tends to
reside nearby, but if a disturbance (the origin of which is not modeled here)
occurs, the enzyme level may abruptly shift, e.g. from R, to R,, consistent
with a high level of ambient toxin and a relatively high formation rate for
adducts. Switches back and forth may occur. Such behavior has been called
bistable. The conditions described tend to be associated with a relatively
high rate of fixation by mutation when R(¢) is near R,, with subsequent
damaging effects. However, other protective behavior such as apoptosis
(programmed cell death) may be stimulated to inhibit overall adduct
fixation and tumor production. Apoptosis is not modeled here.

Graphical analysis shows that invocation of a Michaelis—Menton or Hill
expression for enzyme creation may produce results that are qualitatively
similar to the above.

3.1. Stochastic model (simulation). The above deterministic model can
be “made stochastic” in several ways, but the simplest, if not most elegant
and complete, is to computer-simulate: (a) discretize time in equal-sized
steps; (b) allow a discrete-time-step version of (2.1) to define the mean of a
Markov stochastic process with (¢) normal/Gaussian increments whose
mean(s) are defined as in (b) and with variances equal to (or proportional
to) the above incremental means, as would be appropriate for a diffusion
approximation of a simple birth—death process. The latter may be more
appropriate for adducts than for chemical concentration or for the enzyme.
Formalize as follows, making time steps unity on an appropriate scale.

Mean sequence.

A(s +1) =A(s) + Ay + M T(s) — pp 4 R(5) A(s) — 8,4, A(s)
=A(s) + AA(s), (3.2)
T(s+ 1D =T(s) + 7:(s) — 8;T(s) — ups R(s)T(s)
=T(s) + AT(s), (3.3
R(s+1) =R(s) + B(R — R(s)) — 8xR(5s)
— pr4R(s) A(s) ~ prr R(s)T(s)

=R(s) + AR(s). (3.4)
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Stochastic increments.
AA(s) = Ay + o4(5) AW(5) + A, T(s) + ay(s) AW (s) — pg  R(s) A(s)
— O (s) AW 4(5) — 8,3, A(s) — a4, (5) AW(s), (3.5)
where
i (s) =&y,
ol(s) = EMT(s),
Opa= EraraR(s) ACs),
A (8) = £, 8,44 A(S). (3.6)

The terms AW, are mutually independent and normal /Gaussian with mean
0 and variance 1 (if a different time step, the variance = time step). The
constants &, £,, £z, and &, are introduced so as to allow variability
adjustment; putting them all equal to unity simulates a diffusion approxi-
mation to a simple birth—death model.

Likewise,

AT(s) = 7o(s5) + 0o(s) AW (s) — 8;T(s) — a,(s) AWr(s)
— prrR($)T(s) — og(s) AWry(s), (3.7)
ol (s) = éctc(s),
o2(s) = €,8,T(s),
orr(5) = Egr uprR(s)T(s). (3.8)
Finally
AR(s) = B(R — R(5)) + a,(5) AW,(s) — 8z R(s) — ax(s) AWg(s)
— g aR(5) A(s) — ag (s) AW ,(5)
— prr R($)T(s) — ogr(s) AWg(5). (3.9

It should be clear how to write down formulas for 0'52 and so forth. Form
the simulation realization or single-sample history of mutual state compo-
nent evolution as follows:

A(s + 1) = A(s) + AA(s), (3.10)
T(s + 1) =T(s) + AT(s), (3.11)
R(s + 1) = R(s) + AR(s). (3.12)
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Start from initial conditions. Slight modifications will be necessary near
boundaries to retain R(s) values positive and never greater than R; also
T(s) and A(s) are positive for all s. Note that there is a normal /Gaussian
Wiener process increment with each incremental component; some are
common to two state-variable increments, e.g. AW, is in common with
AT(s) and AR(s). The increment components that are not common to
others can be combined so as to make necessary generation of just one
(independent) increment component. The formulation of (3.2)-(3.12) offers
many possibilities to introduce stochastic noise into the deterministic model.
Different model behavior can result from different models of stochastic
noise. Simulations with small noise &= 0.001 display the behavior that the
variables vary about the stable point at which the simulation is initiated.

Mathematical theory. Features of the escape from the neighborhood of
either of two possible local stability points can be treated mathematically.
This topic is called the exit problem and it is related to the theory of large
deviations. Prominent contributors are Schuss (1980), Varadhan (1984),
Aldous (1989), Simonian (1995) and Freidlin and Wentzell (1984). An
accessible textbook is Bucklew (1990). Attempts to mathematically calculate
features of the process of jumping between stable points are not made in
this paper; the qualitative features of the process are illustrated by simula-
tion results.

Example 1. Figs. 3-8 illustrate hypothetical time developments of adduct
populations and corresponding amounts of enzyme. The initial values of A,
R and T are set equal to the largest root R, of the cubic equation
equivalent to (3.1) and the corresponding values of 4 and T; the &, =25
and the other ¢ =1. Two replications are displayed in Figs. 3-5; both
depend on the same parameters, but flare-ups of adducts appear at quite
different times. These high-adduct periods correspond to jumps from R
values near R, to others near R, (and in the present case rather quickly
back), which are triggered by high fluctuations in internal toxin T(¢) caused
initially by random fluctuations in 7(z), the amount of toxic chemical
entering the cell. Figure 6 displays results for one replication. Figures 7-9
display time series of the amount of enzyme, the simulated numbers of
adducts and the amount of toxin along with histograms of the values. The
histogram of the amount of enzyme has the most pronounced bimodal
appearance. The less pronounced apparent bimodality in the histograms of
numbers of adducts and the amounts of toxin presumably reflects the fact
that the derivatives of these two quantities are functions of the amount of
enzyme, and so the number of adducts and the amount of toxin tend to be
more related to the area under the enzyme time series and are thus
smoothed. In these figures, all based on hypothetical parametric values,
bistability is plainly visible. However, the jumps are not as extreme as those
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TWO REPLICATIONS INITIAL ENZYME=17.14
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Figure 3. Two replications of time development of number of adducts.

suggested by the deterministic model. The stochastic model introduces an
apparent damping effect on the number of adducts that is not predicted by
the deterministic model. A burst of adducts can be expected to precede and
trigger other events upon successive replication after fixation of single or
multiple mutations. Another possibility, also not currently modeled, is the
possibility of actual cell death through necrosis or apoptosis when the
intracellular toxin is relatively high and adducts are present.

Example 2. Dose—response simulation: Enzyme and adduct distributional
summaries depending on the mean toxin input rate (1) and noise level. In
toxicological terms the toxic chemical input to the cell 7 is a dose and the
number of adducts A(¢) is a response. A related, more meaningful response
could be cancerous material that resulted from the adducts, but the adducts
themselves will suffice. Simulations of our model are suggestive about the
shape of a dose—response relationship.

To illustrate the dose-response relationships the following parameteriza-
tion of the model has been simulated: Ay =0, A; =10, pg , =0.5, 8,,, = 0.5,
67=05, urr =006, 8,=1, B=4, and R=20. We have let time run for
100 units with time steps of 0.005. Only one sample function or history has
been generated for each case because of time limitations. Furthermore, we
have considered various levels of endogenous and exogenous (toxin input)
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Figure 4. Two replications of time development of amount of enzyme.
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Figure 5. Two replications of time development of amount of toxin.
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Figure 6. One replication of time development of number of adducts and
amounts of enzyme and toxin.
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Figure 7. One replication of time development of amount of enzyme.
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REPLICATION INITIAL ENZYME=17.14

LI S

- LAMO=0 LAM1=10 MURA=.5 TAU=5 DELAM=.1 DELT=.1
B MURT=.6 DELR=.1
| TIMESTEP=.01 BETA=4 RBAR=20
XH{C)=25 OTHER XI())=1
|
L
=
lLNMc VT ] L L A Pganad®y 1 ) 2
0 20 40 60 80 100
TIME
HISTOGRAM OF NUMBER OF ADDUCTS

1} ' s
—L 1 i | i He——r— L Il

100 200 300 400
Number of Adducts

Figure 8. One replication of time development of number of adducts.
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Figure 10. Quantiles of number of adducts for a replication for various toxin
inputs and noise variances.

noise: smallest being Poisson with £ = 0.001 in (3.6); second smallest being
Poisson ¢, =1; largest also Poisson, ¢ =1.0 except ¢r=25. We have
summarized the responses (e.g. total adducts present each time step) by the
median (50% point) and 0.9 quantile (90% point) over each case = sample
history. The results are displayed in the graphs of Figs. 10 and 11.

The graphs indicate the possibility of a sharp non-linearity of threshold
effect; this possibility is supported by examination of (3.1a) and particularly
Fig. 2 a~c: As 7., the mean toxin input, is increased, the solid curves of Fig.
2 tend to rise vertically. At some point Fig. 2a becomes like Fig. 2b, with
the sudden appearance of a small-enzyme-concentration stable point. This
corresponds at first to an occasional high-adduct presence, but as mean
toxin input is increased further the enzyme repair becomes saturated and
the adduct population grows rapidly, as indicated by both median and 90%
point. Furthermore, there is some tendency for relatively high variability of
toxin 7 to produce even greater adduct accumulation or more pronounced
threshold effect.

The above example is the consequence of a simple, but biologically
plausible model for a single cell. It does not necessarily imply that all cells
in an organ (or on a dish in in vitro studies) will exhibit threshold effects.
First, cells may well differ in their individual enzyme-protective capabilities:
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Figure 11. Quantiles of amount of enzyme for a replication for various toxin
inputs and noise variances.

some may have relatively high values of R, B, which give them an
advantage over others. Second, the model neglects any signaling between
cells and consequently protective effects of apoptosis or necrosis.

4. Discussion. DNA abnormalities, e.g. adducts related to chemical expo-
sure, are linked to mutation and the process of carcinogenesis. Hence their
existence and relative prevalence within a tissue or cell may be useful as a
risk analysis tool. However, the number of DNA adducts within any given
cell of an organism on a temporal scale after acute or chronic expo-
sures may be highly variable as a function of many interrelated biological
processes.

In the present non-linear dynamic model the possible effect of initial
conditions is dramatically illustrated: even a sudden brief shift of intra-
cellular toxic chemical concentration can initiate a qualitative shift in cell
condition, both inducing adduct formation and hobbling the cell’s repair
mechanism by binding the repair enzyme. The biological significance of the
model is that such shifts, occurring within a context of replication across a
number of cells, can lead to adduct fixation as mutation and preconditions
for transformation depending on the site, penetrance and expressivity of
the event. The effect may be selective for individuals in the sense that some
may have more resistance to assault owing to greater repair capability:
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larger enzyme production attributable to relatively larger propensity for
enzyme creation in (2.3), leading to a greater-than-average repair enzyme
concentration. Alternatively, there could exist a greater selectivity in bind-
ing of the repair enzyme to DNA adducts rather than toxin, i.e. pg 4> ey
in (2.2) and (2.3) in some individual or tissues, thus leading to greater
resistance to toxin. On the other hand, if propensity to form adducts is
characteristic of at least some cells, i.e. reflected in relatively large parame-
ters A, and A, and perhaps also in outsized fixation rate 8,,, (see (2.1)),
then there can be interindividual variations that could quantitatively de-
scribe an inherited predisposition to cancer as discussed by Sommerfeld
et al. (1995). This characteristic would be independent of the many pre-
existing mutations in genes known to be involved in the appearance of
cancer in certain individuals.

Experimental methods do not now exist to adequately deal with the
complexities of rapid shifts in equilibrium affecting DNA adduction or
mutation in complex organisms or tissues composed of many different cell
types. However, the reported model does suggest that it is relevant to
develop analytical approaches to address these issues in the future based on
cultured cells with various well-defined initial and induced levels of repair
and detoxifying enzymes. Such studies might enhance the capability to
predict the more specific responses of certain individuals to exposure.

APPENDIX

Cubic Equation for Enzyme Fixed Points. The cubic equation that describes the fixed
points of (2.1)-(2.3), specifically the solutions of (3.1), is

(B+ 8p) g gy R+ [—BRug 4 gy + (B+ 8) (g 87+ trrBan) + Ag g ey
+7ctrritp 4l R*+ [ = BRC g 487+ ppr8apn) + ( B+ 82) 8,40 87

+ g padr+ MTe g g + Te MrrBap IR — BR8 4y 87 =0. (A.D

Division by ( 84 8g)pg 4 rr puts this into the form in Hodgman (1963) or Press et al.
(1992):

X Haxl+bx+c=0, (A2)
where
o [=BRug .4 gy + (B+ 80 pg 407+ trr8an) + (Mg + 1) g 4 iger]
(B+8p)igq rr

3

[=BRCpug 487+ tryr8apr) + ( B+ 8g) 840 B7 + Ag g 487 + A\i7c g a + Te irr San]
(B+ 8 g4 Mrr

>

~BR8, 5,

_ mor (A3)
(B+ 8 g4 rr

Cc
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Next, put

a’>—3b S 2a® —9ab +27¢

2 A.4
S 54 (A4

If §2< Q3 there are three real roots; if $°> Q7 there is one real root {(and two
imaginaries); if §° = Q°®, there will be equal roots.

No attempt has been made to simplify or interpret the formidable algebraic expressions
that are obtained from the above formal manipulations. Note, however, that if there is no
toxin input, i.e. 7.(¢) =0, then 7(r) = 0 and the cubic (A.1) reduces to the quadratic

(B+ 8 g aR*+ [ —BRug 4+ (B+8g)840 +AgpgalR—BRE,,=0. (A5

It is apparent from the explicit solution that there will always be one positive fixed point,
which will be the largest solution of (A.5). This will be a stable point. This conclusion follows
directly from a graphical argument like that used before.
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