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This paper provides guidance for the planners of a test of any system that operates in
sequential stages: only if the first stage functions properly (e.g., a vehicle’s starter motor
rotates adequately) can the second stage be activated (ignition system performs) and
hence tested, followed by a third stage (engine starts and propels vehicle), with further
stages such as wheels, and steering, and finally brakes eventually brought to test. Each
sequential stage may fail to operate because its design, manufacture, or usage has faults
or defects that may give rise to failure. Testing of all stages in the entire system in
appropriate environments allows failures at the various stages to reveal defects, which
are targets for removal. Early stages’ fault activations thus postpone exposure of later
stages to test. It is clear that only by allowing the entire system to be tested end-to-end,
through all stages, and to observe several total system successes can one be assured that
the integrated system is relatively free of defects and is likely to perform well if fielded.

The methodology of the paper permits a test planner to hypothesize the numbers of
(design) faults present in each stage, and the stagewise probability of a fault activation,
leading to a system failure at that stage, given survival to that stage. If the test item
fails at some stage, then rectification (“fix”) of the design occurs, and the fault is (likely)
removed. Failure at that stage is hence less likely on future tests, allowing later stages
to be activated, tested, and fixed. So reliability grows.

To allow many Test and Fix (TAF) cycles is obviously impractical. A stopping
criterion proposed by E. A. Seglie that suggests test stopping as soon as an uninterrupted
run/sequence of r (e.g., 5) consecutive system successes has been achieved is studied
quantitatively here. It is shown how to calculate the probability of eventual field success
if the design is frozen and the system fielded after such a sequential stopping criterion is
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achieved. The mean test length is also calculated. Many other calculations are possible,
based on formulas presented.

Keywords: System reliability; reliability growth; optimal stopping rule; probability
models; design burn-in.

1. Introduction

This paper provides mathematical models of reliability growth by design defect or
failure-mode identification and removal in system reliability testing and manage-
ment, for instance during military Test and Evaluation (see Ref. 31). This is some-
times referred to as Test-and-Fix (TAF). The models demonstrate how testing can
promote early learning about, and rectification of, system defects in design, manu-
facturing, and operations. In the military and elsewhere, such testing should, and
does, begin with engineering-level Developmental Testing (DT) — initially of sub-
systems — and terminates with end-to-end Operational Testing (OT). At present,
attempts are being made to compress and combine DT and OT so as to shorten
acquisition time and decrease its expense. The models proposed are intended to pro-
vide insight to modern test planners. Software that exercises the models is available
from the authors.

The model structure to be studied is the following: a system, S, is made up of S
(S > 1) subsystems or stages, each of which must function on demand, in sequence,
for perfect operation; failure of any subsystem, especially to interact with another
subsystem (interaction can also be viewed as a stage), means total system failure.
Demands for subsystem, or inter-subsystem, function occur in order, stagewise;
s=1,2,...,5. If a demand at an intermediate stage/subsystem, s, succeeds, i.e.,
any defects do not activate, a demand is placed on stage/subsystem s+1; if all such
demands succeed, the entire system operates successfully on that particular test or
usage occasion (it may not again if remaining defects activate). Such sequentially
activated systems are encountered, inter alia, in the testing of complex weapons
and in software reliability.

To perform a system-level operational test of S, suitable test conditions are
first established. It is desirable to quantify those conditions (weather and other
environmental effects, pre-test transport and setup stress, target properties, etc.).
This can be done by incorporating explanatory variables to represent between-
test variations. For recent related modeling, see Ref. 9. Under given conditions
let each subsystem possess a certain (random, or at least unknown) number of
failure modes (or defects), d,, for subsystem s, s < S. These modes become ac-
tive (cause failure) with probability 8, if a demand is received at that stage;
~ otherwise are inactive or survive with probability 1 — 9, = 0,. In order for the
sth subsystem to ewperience test, and hence possibly reveal a failure mode, all
previous ¢ € (1,2,...,s — 1) subsystems, and their interconnection and transi-
tion actions, must survive, and hence transmit, demands. If a failure mode in
a subsystem is activated (causes failure), the design or execution may well be
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modified. Here it is optimistically assumed that the failure mode is removed,
and thus “reliability growth” occurs. This simplicity may not hold: new failure
modes may actually be introduced, and bedrock non-removable failure modes
will remain. Extensions of the current work to incorporate such features are in
progress.

The ideas we explore are related to, but not the same as classical burn-in;
whereby early testing removes weak components from an existing population; see
Refs. 8 and 25. Our problem emphasizes design burn-in: systems are tested and the
design improved before a population of manufactured and fielded items is created.
Members of that population can possibly then experience classical burn-in before
fielding, but the need should be reduced if the design has already been improved.

The paper is structured as follows: Sec. 2 presents some issues which are op-
erationally relevant and which provide the focus for much of the later material.
Section 3 introduces our models and develops procedures for the computation of
key operating characteristics of given test designs. In Sec. 4 we propose a simple
approach to the modeling of between test variability. A sequential test plan that
ensures that all the stages will be tested at least r times is to test until there is a
run of v consecutive system successes; (see Ref. 28 ). Section 5 discusses a Bayesian
model that suggests that, while not being Bayes optimal in a formal sense, a runs
test provides a simple and effective test stopping rule. All of the above discussions
are complemented by numerical examples. The paper concludes with a summary
in Sec. 6.

2. Operationally Relevant Questions

Given preliminary values of the parameters, inferred from engineering design and
experience with analogous subsystems and systems, it is operationally meaningful
to address such questions as these prior to expensive field testing:

(a) After a given number of system tests, what is the (approximate) probability that
the system will operate satisfactorily when released to the field or delivered to
a user?

(b) How many tests are likely to be required to achieve the first {or jth) end-to-end
success?

(c¢) How many tests are required to achieve r consecutive end-to-end test successes,
or, in statistical parlance, a (first) run of r? This is a possible test-stopping
rule that is attractive because of its simplicity and intuitive evidence of system
success.

(d) Suppose testing is stopped after T tests, where T is determined by some stop-
ping rule, such as in (c). After testing, no further design modifications are
contemplated. What are the failure characteristics of the system if fielded: e.g.,
what is the operational/field probability of system (reliability) success? For a
previous account of this measure of system success under “reliability growth”,
see Ref. 15.
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(Start Test) —P (End Test Successfully)

Stage 1 Stage 2 Stage S

(End Test Unsuccessfully at Stage s)

Fig. 1.

3. Models for Discovery of Hidden, or Sequentially-Evident,
Design Defects

A system is composed of a number, s, of subsystems or stages, each of which
contains an uncertain number of failure modes (design defects). We write Dy(t)
for the number of defects present in stage s after ¢ tests. When a design defect is
activated during a test, the system fails at the corresponding stage, the defect is
removed and that particular test terminates. Figure 1 illustrates the configuration
and outcomes.

If test ¢t + 1 is ended unsuccessfully at Stage s then

Dy(t), & +#s
D.(t)—-1,8=s

while if test ¢ + 1 is successful then D(t + 1) = D(t). Note that the discussion in
this section and the next, conditions upon the value of D(0), the configuration of
design defects present before testing. In Sec. 5 we sketch a Bayesian approach to
uncertainty about D(0) .

We shall assume that, when subject to test, successive stages fail (or not) inde-
pendently of each other. Conditional upon stage i having d;, defects the probability
that a defect is revealed during test is f;(d;) = 1 — gi(d;), where we take §;(0) = 1.
An important special case is the binomial model §;(d;) = 6% for some 8; € (0,1).
However, allowance for extra variability in §; can be made by taking §;(d;) = E[§%]
where 6§ ~ G; for a distribution function G;. This is natural to reflect within-stage
variability beyond the simple binomial and may be viewed as representing physical
mixtures. Although we assume that discovered defects are removed with certainty,
we can incorporate a probability p; of successful defect removal at stage ¢ upon re-
placing (1 —6;) by (1 —6;)p; and proceeding. We also use Q;(d;) for the probability
that no defect in stage ¢ is revealed when the system is put in use in the field during
a single mission.

Dy (t+1) ={

3.1. Examples of conditional models §(d)

Here we drop the stage suffix ¢ and explore possible choices for the over-variable
model ¢(d) = E[f?) where 8 ~ G. If we take § ~ 3(a,b) then

o Tla+bdl(b+d)

1) = roras5+d
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with §(d) = (d + 1)7! for the special case of uniform on (0, 1). One possible
normalization is to put the mean of the beta distribution when d = 1 equal to
the original “deterministic” survival probability 6. Alternatively, using a gamma
distribution with mean u and shape parameter 8 upon —In 6 yields

o= ()"

which coincides with the uniformly distributed @ case above whén w=p8=1.
Normalizing at d = 1 gives

-8
q(1) = <1+ %) C == p=p6(0""F -1,

where 3 is an optional tuning parameter. If we take —In 8 to have a positive stable
law (see Ref. 14) we obtain, upon normalization at d = 1, that

a(d) = 0¥

for some 0 < B < 1. Finally, when —In 8 has an inverse Gaussian distribution, we
obtain

1 = exp{ - {1+ 2002 -1},

where p and c are, respectively, the mean and coeflicient of variation of —In 6.

3.2. Ezpected probability of system field success after a fized
number, t, of tests

Let X{D(t)} be some function of the number of defects present in each stage after ¢
tests. We adopt a forwards approach to the (recursive) computation of E{X (D(t))]
as follows:

E[X{D(t + 1)}] = E[E[X{D(t + 1)} D®)]]

=1

S S
= E | X{D®)} []&®:®) + {ZX{D_(t) —lj}

X [1-g;(D;()] H (ji(Di(t))} (3.1)

where 17 denotes an S-vector with jth component equal to one and zeros elsewhere.
Now consider the important special case

X{D}=I{D=d}
where I is the indicator function, such that

E[X{D(t)}] = P{D(t) = d} = p(d, 1),
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the joint probability of the number of defects in each stage after ¢ tests. From
Eq. (3.1) we obtain the recursion

S j—1
p(d,t+1) = p(d, 1) qu D+ Y p(d+ 1, ){1-qj(dj+1)}{1‘[qi(di)} (3.2)
=1

Jj=1
which is initialized with
p(d,0) = I{D(0) = d}. (3.3)
The probability of system survival in the field after ¢ tests is

s s
=E [H Qi(Di(t))} = pldt) {H Qi(di)}- (3.4)
i=1 d i=1
The following result expresses a notion of reliability growth in this context.

Lemma 1. If {Qi(d), d € N} is a decreasing sequence and §i(d;) < 1 for all
di >0,1<i< 8, then {Q(t), t € N} is an increasing sequence with hm Q) =1.

Proof. Let w be any realization related to a sequence of ¢t + 1 tests, commencing
from a situation with D(0) = d . Use D(¢,w) and D(t + 1,w) to denote the con-
figuration of defects remaining following ¢ and ¢t + 1 tests respectively. Under the
condition in the statement of the lemma, since D(¢,w) > D(t + 1,w) component
wise, then

s 8
[[Q:Dit,w)} < [T Q:i{Ditt +1,0)} (3.5)
i=1 i=1

Taking expectations we infer that Q(t) < Q(t + 1) and hence that {Q(t), t € N} is
an increasing sequence. Since it is bounded above by 1, it must converge to a finite
limit. That the latter must be 1 follows by use of the recursion (3.2) together with
an induction argument. O

The following numerical examples are based on four-stage systems with simple
binomial stagewise failures: §;(d;) = Qq(di) = 0?. We suppose that in all cases
there are three defects present in each stage before testing. The quantity Q(t) in
Eq. (3.4) is plotted for three -configurations in Fig. 2. '

The graph suggests that'reliability growth in a several-stage serial system is not
likely to have the characteristic of classical one-stage reliability growth models of
Duane and later authors, e.g., Ref. 16. There are ample physical reasons for this
behavior. They also imply that more rapid and complete defect elimination, and
hence “reliability growth” occurs-if the last-reached system stages are apt to fail
sooner than the earlier-reached stages. The reason is that the need to re-test the
last stages forces more tests of the earlier ones because of the end-to-end success
requirement. It is unlikely that a designer or tester can ever directly influence such a
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Prob of system survival after t tests
initial number of defects: 3, 3, 3, 3
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Fig. 2.

distribution of defects, but there may be implications for variations in the intensity
of component-level testing: one might tolerate a few more defects in later stages,
so that earlier stages will be subjected to more operational end-to-end tests.

3.3. Operating characteristics when testing stops after first run of
r consecutive successful tests

Suppose the system test is stopped when there are r > 1 successful end-to-end tests
in a row (a “first run of r”). A test with this stopping rule ensures that all stages
are tested at least r times. We use T(r) for the number of tests conducted until
stopping and D{T(r)} for the number of defects by stage, which are present then.
Let X[T(r),D{T(r)}] be some function of these quantities. By conditioning upon
the outcome of the first attempt to secure a run of r successes, and utilizing the
Markovian structure of the process we obtain the backwards recursion

s K
E[X[T(r), D{T(r)}]ID(0) = d] = X(r,d) {H &i(di)}
i=1

r S
+ 203 BIX[T(r) +n, D{T(N}HD(0) = d - 1]
s n-1,3
X {H Gz‘(di)} T @)1 - (a3
i=1 =1
(3.6)
If we take"

s
X([T,D] = [[ Q:(Dy), (3.7)

=1
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then Eq. (3.6) provides a recursion for the quantity p.(d), the conditional expected
probability of system mission survival in the field after the test, given that the initial
number of defects is D(0) = d. The recursion starts with p,(0) = 1. Alternatively,
if we take

X[T,D] =T, (38)

then Eq. (3.6) provides a recursion for the quantity 7.(d), the conditional expected
number of tests until a run of r successes first occurs, given that the initial number
of defects is D(0) = d. An initial condition is 7,-(Q) = .

The following result characterizes the behavior of the key operating character-
istics p,(d) and 7,-(d).

Theorem 1. If §G;(d;) < 1 for all d; > 0,1 < ¢ < S, then it follows that for each
fized d

(1) The sequence {p,(d),r € N} is increasing with limit 1;
(2) The sequence {1-(d) — v, € N} is increasing with limit A(d) which satisfies
the recursion

S
{1 —H@-(d«:)} Ad) =1+

i=1

ﬁq )1—q](d))A<d—1f> d#0
0.

Proof. We give the proof of (2) and omit the similar, but simpler, proof of (1).
Let w be any realization related to an infinite sequence of tests commencing from
a situation in which D(0) = d . Use T(r,w) for the number of tests required to
obtain the first run of r successes. The quantity T(r,w) — 7 is then the number
of tests prior to T(r,w) which do not contribute to the first run of r. Note that
T(r,w)—r < T(r+1,w)~(r+1) since any test which does not contribute to the first
run of r cannot contribute to the first run of r+ 1. Taking expectations we conclude
that for all r and d 7-(d) —r < 741(d)— (r+1); hence the sequence {7.(d)—r;r € N}
is increasing. It must, therefore, either have a finite limit or be divergent. To see
that it cannot be the latter we note that, under the assumption of the theorem, for
any current configuration of defects d, the system has a geometrically distributed
number of successes (with finite mean) before a defect is removed. Should all defects
be removed at $ome point, a run of r successes is guaranteed. It follows that 7.(d)—r
remains bounded and hence has a limit A(d), say. Direct use of Eq. (3.6) yields the
recursion for A(d) in the statement of the theorem.

The recursion described in Eqgs. (3.6) and (3.7) permits rapid numerical deter-
mination of the mean or unconditional probability of field success. However, simu-
lations show that there can be considerable variability of the actual probability of
field success around its expected value, depending on defect survival. The following
forwards approach can be used to determine the full distribution of the probability
of field survival after the test. Let a; < d;, 1 < 1 < §, with d the assumed initial
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profile of numbers of defects. Write 4,(a) for the probability that at some point
during testing the defect profile g is encountered. Obtain the 7,(g) recursively from

n
S r—1 S
(@) =A@ +1*) Y | [] @(as) § dslas +1)
s=1 n=0 i=1 i
i#s \ ’ b

s—1 ’
X {H qi(a"i)} (1 —4gs(as +1)], , (3.9)
t=1

with initial condition .(d) = 1. We then deduce that 4,(a), the probability of
defect profile g at the conclusion of the test, is given by

S T
(@) = 4r(a) {H ‘i'i(a"i)} . (3.10)
i=1
The distribution of the probability of field success after the test may now be inferred
from Eq. (10). a

3.3.1. Numerical results

In the example whose results are displayed in Fig. 3, we take §;(d;) = Qi(d;) = 6.
Note that Fig. 3 displays considerable robustness of mean mission survival outcome
to number of design defects and activation probabilities: often the mission survival
probability exceeds 0.8-0.9. Note that in the case 8: 0.75, 0.25, 0.75, 0.25, the
probability of mission survival after testing increases slightly as the initial number

Prob of system survival after run of 3 successful tests

1
0.9# —3 o f
08 +—N 9 I ™
07
06
05
04
03
02
0.4

0

vy
b4

1 2 3 4 5 6 7 8 9 10
Initial number of defects in each of 4 stages
16:5.5.5.5 ©0.75.25.75.25 #6:25 .75 25.75

Fig. 3.
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of defects in each stage increases. In this case the larger test activation probabilities
0; =1 —6; = 0.75 for stages 2 and 4 result in more testing of stages 1 and 3.
Consequently, the design defects in stages 1 and 3 are more apt to be discovered and
removed; the probability of mission survival after testing increases as the number
of defects increases.

In the examples presented in Figures 4-7 we compare key operating characteris-
tics for the run’s test for situations in which the conditional model for stage failure is
(a) binomial with §;(d;) = 8% and (b) an extra-variable model with §;(d;) = E[6%]
where 6 ~ B(a;,b;). We choose the parameters a;, b;, such that the mean of the
beta distribution always equals 6; in the corresponding comparator system.

From Figs. 4 and 6 it is striking that the order of the defect survival probabil-
ity occurrence (which may be practically difficult to control at the developmental

Prob of fiald success for a test with stopping rule of 3 successes in a row

09 - | 'y ‘ L J L 4

0 2 4 6 8 10
tnitial number of defects in each of 4 stages
[®6=5.5,.5, .5 Mbeta mixed: a=1, b=1

Fig. 4.

Mean number of tests to obtain 3 successes in a row
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45 : **

0 T . T T
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Fig. 5.
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Prab of field success for test with stopping rule of 3 successes in a row
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Mean number of tests to obtain 3 successes in a row
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Fig. 7.

25

testing stage) can be influential at the final field survival probability level. Once
again, in the case of Fig. 6, 8: 0.75, 0.25, 0.75, 0.25 exhibits improved field response
with more defects for the Bernoulli-trials case, but not for the over-variability case
studied. Note that the mixing distribution employed in Fig. 4 is symmetric, but

with high weighting near 0 and 1. Such an environment badly penalizes the tester if

there are many (e.g., five or more) defects in the system initially. Figure 6 illustrates
a similar phenomenon for another diffuse beta mixing distribution. From Figs. 5
and 7 it is seen that the mean times to achieve a success run of 3 for the differ-
ent parametric cases are remarkably similar. These are isolated examples only, but
certainly promote interest in run-like rules.
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4. Examining the Effects of Test-to-Test Variability

We now suppose that we have an i.i.d. sequence €1, ¢, ..., of environmental test-
specific random variables. These are assumed positive and held fixed for each entire
test, with &, the variable applying to test n. The impact of these variables is as
follows: if in test n, stage ¢ has D;(n) defects, then the probability that no defect
is revealed should stage i be put to test is [§;{D;(n)}]*~. With this modification,
Eq. (3.6), for example, is replaced by the recursion

E [X[T(r), D{T(r)}ID(0) = d] = X[r,d{Ms(d)}"

r S
+ 3N EX[T(r) + n, D{T(r)}}ID(0) = d — 1]

n=1j=1

x {Ms(d}"{M;_1(d) - M;(d)}, (4.1)

]
=E, I:exp{—s {Ej:—lnqi(di)}}] , 1<j<8 (4.2)

The latter expressions may be evaluated in terms of the Laplace transforms of the
e-distribution. To obtain the mean number of tests with a run of successes, take
X[T,D] =T in Eq. (4.1).

It may also make sense to introduce an i.i.d. sequence &1(f), €2(f),..., of ran-
dom variables relating to environments encountered when deploying the system in
the field. Any such sequence is deemed independent of the g-sequence above and,
most significantly, may be differently distributed. If we now wished to compute the
mean probability of system mission survival in the field after a “first run of r” test,
we then take

where

e(f)
X[TD E 1) <HQz(D )

s
=By [GXP{—e(f) (Z—ani(Di)) }]
=1

and use Eq. (4.1). The following figures display the important role that the presence
of environmental variability may play in the ablhty of operatlonal testlng to result
in the fielding of reliable systems:

Figure 8 displays probabilities of system field success for a system that has
been tested until there is a run of five successes. The testing environmental random
variables have a gamma distribution with mean 1 and shape parameter 0.5. The field
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Probability of system survival after completing test until a run of 5 successes in a row
6=0.50.50.50.5
Test: Gamma distributed environment mean=1 and shape parameter=0.5
Field: Gamma distributed environment mean=1 and shape parameter= beta
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Fig. 8.

Prob of system survival after completing test until run of 5 successes in a row
6=0.50.50.50.5
Test:Gamma distributed environment mean=1 and shape parameter= beta
Field: Gamma distributed environment mean=1 and shape parameter=0.5
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Fig. 9.

environmental random variable has a gamma distribution with mean 1 and shape
parameter 3, which has been made widely variable. Note that the smaller 3 is, the
greater is the probability of field system survival. In the present case, the testing
environment is variable enough to produce an effect that is, in quite disparate field
conditions, fairly insensitive to the distribution of random field effects.

As in Fig. 8, Fig. 9 (respectively 10) displays probabilities of field success
(respectively, the number of tests required) for a system that is to be tested until
there is a run of 5 successes in a row. Here the field environmental random variable
has a gamma distribution with mean 1 and shape parameter equal to 0.5. The test
environment random variables have a gamma distribution with mean 1 and variable
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Mean number of tests neaded to obtain § successes in a row
Test: Gamma distributed environment mean=1 and Shape Parameter=beta
Field: Gamma distributed environment mean=1 and Shape Parameter=0.5
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Fig. 10.

shape parameter 8. The small shape parameter, 3 = 0.1, results in smaller mean
number of tests required, but at the price of a smaller probability of field success.
This is because a gamma density function with 8 = 0.1 has most of its mass close
to 0. Thus, most of the time the probability that a defect is revealed during a test
is close to 0, and the test is over too soon to eliminate many defects. However,
since the field environment random variable has a shape parameter equal to 0.5,
the defects remaining after the test is completed are likely to be triggered in the
field.

Variable test environments that allow a disproportionate number of excessively
benign environments, even though balanced by some that are excessively stringent,
can thus severely bias the quality of the fielded product.

5. Bayesian Formulations

A natural approach to the uncertainty concerning the numbers of design defects
initially present is a Bayesian one in which D;(0) is treated as a random variable
with (prior) distribution II* = {II},d > 0}, 1 < i < S. In what follows, we shall
suppose that the random variables D;(0), 1 <4 < § are independent and that the
conditional model for failure discovery and removal is as in Sec. 3, with §(d;) the
conditional probability of subsystem i success, given d; defects present. In such a
setup, consider the situation following ¢ tests of the system.

Each subsystem ¢ will have its own history Hy: = {zs1, %2, ..., s} where each
x;; takes one of three possible values, namely

{subsystem ¢ was not subjected to scrutiny during test j because of the failure
of an earlier subsystem} = O;;; o '

{subsystem i was subjected to scrutiny during test j and operated success-
fully} = Sij; and
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{subsystem 7 was subjected to scrutiny during test j and a defect was activated
and removed} = Fy;.

The first of these cannot occur for subsystem 1. Let II*(t) be the inferred (pos-
terior) distribution of D;(t) upon suitable application of Bayes’ theorem. Updating
is described as follows: ’ '

= H'&(t), if xpy1 = ’O:L'H.iQ i
Mt +1) Q o My(t) dild), if Zit+1 = Sit+1; and (5.1)
o Iy ({1 = @a(d + 1)}, if @ie1 = Fiepa.

In general, the posterior II*(t) will depend upon the entire history H;, and in
particular will depend upon the order in which successes and failures occur.

5.1. Conjugate families of prior distributions

In this highly complex scenario it seems reasonable to make an initial search for
simplicity in the form of the elucidation of conjugate structures. To the authors’
knowledge, the only families of conjugate priors for this problem arise from a
requirement that each posterior IT¢(t) should depend upon the history H;; only
through {S;(t),F;(t)}, where S;(¢) is the total number of successful operations of
subsystem ¢ during ¢ tests and F(t) is similarly defined in terms of failures, (i.e.,
defect activations and removals). Work by Benkherouf and Bather® in the context
of oil exploration implies that this requirement forces a binomial conditional model
of the form

gi(d) = 62,d > 0, for some 6;, 0 < 8; < 1, (5.2)

as discussed in Sec. 3. With this conditional model in place, a family of prior
distributions introduced by Glazebrook?! is conjugate for this problem. Let D;(0) ~
I*(0) = II(\;, 0:,84),1 < i < S, where the probability mass function (p.m.f.) for
the conjugate prior II()\, 8, ¢) is given by

d -1
(A, 6, ) = TIp(\, 8, p)A%gPHd~1)/2 {Ha - at)} , d>0 (5.3)

t=1

where IIg(A, 0, ¢) is a normalizing constant. The parameter space associated with
this family is {0 < A < 1,0< 80 <1,¢ =0}U{}A > 0,0 <8 <1,¢ > 0}. The
first parameter A\ may be interpreted as an overall rate of finding failures, while ¢
may be thought of as a rate of depletion of defects in a subsystem under failure,
and subsequent defect removal. The parameter 8 is always assigned the value of
the probability in the conditional binomial model in Eq. (5.2). The prior family in
Eq. (5.3) is quite versatile. For example, when setting ¢ = 0 there are regions of
the parameter space in which the distribution may approach either a Poisson or a
geometric distribution.
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With the prior II(\;,6;, ¢;,) in Eq. (5.3) and the conditional model (5.2), the
posterior distribution for D;(t) is given (utilizing Eq. (5.1)) by

4(8) = Mg { A3 OO g 0} 1<i<s, (5.4)

ford =0,1,2,.... We conclude from Eq. (5.4) that {S;(¢) + ¢:;Fi(t)}, 1 <i < S, are
sufficient statistics for the problem. This, however, raises a serious issue regarding
the applicability of these conjugate structures in the current context. Recall the
role of the first parameter as an overall rate of finding failures. This in turn implies
that a natural proposal would be to stop testing after t tests when the values

MITOFRE® 1 cicg (5.5)

are sufficiently small. Indeed, Bayes optimal tests with reasonable cost criteria
would be expected to have such a form. However, this observation raises the pos-
sibility that a testing program could be stopped under such a rule following a test
which resulted in system failure. Our judgment is that no such test could be credible
within our envisaged field of applications. While the family of priors in Eq. (5.3)
alone is versatile, the combination of these priors together with the conditional
model Eq. (5.2) (which guarantees conjugacy) is not an acceptable basis for the
development of credible test designs and prior/posterior analyses.

5.2. Stagewise overvariability

Section 3 argues for a modification of Eq. (5.2) by the representation of extra~
binomial stage-to-stage variability in the conditional model. Hence, we now consider
replacing Eq. (5.2) by

Gi(d) = E(0%) withd~G;, 1<i<8. (5.6)

Recall that the binomial model (5.2) was required for the simple structures above
based upon sufficient statistics (S,F). We conclude that, with the more general
Eq. (5.6), the posterior distribution IT*(¢) will depend upon the entire history H;; =
{zi1, T2, . .., Tit}, excepting only those entries z;; equal to O;;. Put another way,
IT¢(t) will depend upon the complete sequence of successes and failures to date. It
emerges that, while we lose simplicity of structure by generalizing in this way, we
make important advances in applicability of the model, and in addition, develop a
rationale for run tests as good stopping criteria.

We focus first on a single subsystem and, for the present, drop subsystem identi-
fier i. The subsystem has D(0) defects initially with associated (prior) distribution
II = {II4, d > 0}. The conditional model is §(d), with p(d) = 1 — §(d), d > 0. We
consider a sequence of ¢ tests during which the subsystem is subject to scrutiny
upon ¢ + Z‘f:ll o5 occasions of which ¢ result in failure (and defect removal) and

;.”:11 o; result in system success. More precisely, o1 is the number of successes
before the first subsystem failure, 0,41 is the number of successes following the
last pth subsystem failure and ¢;, 2 < 5 < ¢, is the number of successes between
failures (j — 1) and j. We write {01, 02,...,04+1, ¢} for this data configuration.
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By repeated application of Eq. (5.1), the posterior probability of d subsystem
defects remaining following these t tests is given by

Hd(t) = Hd‘d},o‘z,.‘.,a'v,_*_l,(p

% p+1
 Tlagy § [[ 80+ ) [H{é(d+w F1- k)}”k] RNCES
j=1 k=1

Further simplification results in the special case §(d) = 1/(d + 1) which results
from taking 6 ~ UJ0, 1] for all stages in Eq. (5.6); see Subsec. (3.1). The posterior
distribution in Eq. (5.7) then becomes .

d+ 1( (P+1 l Ok
II —_— —_— 8 8
d|al,ag,...,a¢+1,np x Hd+‘P <d+ <p+ 1) {kI=11 (d"l’ <p+2 — k) (5 8)

‘We now perform some calculations, which shed light upon the nature of updating
and reliability growth in this general context. A key focus of the analysis will concern
how the posterior probability of system survival in the field varies with the data.
When we discuss the full system we shall need to restore the subsystem identifier
i. Consider now two subsystem data configurations {o1,02,...,00+1,9} = {0, ¢}

and {01,0%,...,0,11,¢0} ={0', 0}

Definition. Data configuration {o,¢} dominates configuration {o’,¢}
The1 0% S They 0k 1< < pand T2 0 = T 0,

The above definition is describing a partial ordering between data configurations
in which the dominating sequence has the same (total) number of successes and
failures, but has the failures earlier. Note that in the models based on the binomial
conditional model in Eq. (5.2) with conjugate prior, the posterior distributions for
the two sequences would be identical. This is no longer the case.

Let Qi(o?, ¢*) for the predictive probability of field mission success for subsys-
tem ¢ following data (0%, ¢%), 1 <4 < S, where

Qi{(0%, ¢} =Y My Qu(d), 1<i<8. (5.9)
d>0

The corresponding predictive probability for the system as a whole is

Q{(ch, 9", (0% ¢%);...,(0%,¢%)} = HQz ot ¢) (5.10)

In the following result we use 7, ¢ s a notation shorthand for the (posterior)
distribution for the number of defects in subsystem ¢ following data configuration
(U,(p),lSZSS.

Theorein 2. For any choices of prior distribution II* with I}, > 0,d € N, and
conditional model (5.6) for which §;(1) = Eg,(0) € (0,1), 1 < i < S, the following
hold:
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(1) If{o*,¢'} dominates {0"*, "'} then II}; i 8 stochastically smaller than m

~ o f,;i,‘f,ﬁ
(2) If the sequence {Q;(d),d > 0} is decreasing and {o%, ¢} dominates {d", o'},
1<i<8, then
Qi{(d%, ")} = Qi{(0", 9"}, 1<i<8,

and hence

Q{("J’ ‘pl)a (02, 902)’ ceey (US, ‘PS)} 2 Q{(Uﬂv ‘Pl)i (0’2’ 902)> ceey (U/Sa ‘ps)};

(3) If the sequence {Q;(d),d > 0} is decreasing, then Q;(a*, %) is non-decreasing
ineachol, 1<j< ¢ +1,1<i< 8, asis Q{(0r, ¢, (0%,¢%),...,(c%,¢%)}.

Proof. (1) Let j be such that a;.* >1and 1 < j < ¢* Consider configuration
{o" 4+ Ut — 1, '}, Direct application of Eq. (5.7) shows that
1 Gd+ ¢t +1-34)
di(d+¢* —j)
i1 a .
Eq, (6% 7|4 d>0, (511)
Eg, (94 —ilgt) 7 T 7 ‘

)
ot o P i
o loti, @ = Ki(o", 4", §)

4
dlort+19+1 -1 ¢

= Ki(ali;(pivj)

for some constant K;(o"t, ¢, j). But since distribution G; has support contained
in [0, 1] it is straightforward, taking limits of discrete distributions, to show that
{Eg,(6%t1)/Eg,(6%), d > 0} is a non-decreasing sequence. It follows immediately
from Eq. (5.11) that the distribution Hf,,,-+lj+1_ljy 4+ 18 smaller than Hfr,,-,(p,- in the
likelihood ratio ordering, and hence also in the stochastic ordering. However, we
can move from (0%, ¢*) to dominating configuration (o, %) by means of a sequence
of transitions of the form (5%, ¢*) — (5% + 11 — 17, ) for some j. This, together
with the transitivity of stochastic ordering yields (1).

(2) is a simple consequence of (1).

The proof of (3) involves straightforward application of Eq. (5.7) and is omitted.

We shall now infer from Theorem 1 two further results, both of which are
strongly suggestive of the appropriateness of the runs tests as effective designs
in the current context. To this end we introduce C(8, F) as the equivalence class of
those data configurations for the system with numbers of successes and failures in

the respective subsystems summarized by vectors S and F. Hence, for example, S

=7

F together summarize a situation in which subsystem j has passed test S; times but
failed on F; occasions, 1 < j < S. Observe that, for vectors (S, F) to be feasible,
for our experimental context we must have

S; =841 +Fj, 1<j<S—1
We write .

P = {(Ul’ ‘pl)a (02’9‘72)7 300f) (GS’ (pS)} € C(S_,E)
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where
o =F;, Y ol=§;, 1<j<8.

We shall use the term successes earliest to identify that member of each C(S, F)
for which the successes in each stage come before any failures; that is,

o} =§;; ol=0, 2<i<F;+1; 1<j<8.

The term successes latest identifies that member of each C(8, F) for which all the
successes come at the end of the test; that is, ‘

ol =0, 1<i<Fy; a%_H:Sj; 1<j<8S.
Note that the successes earliest configuration reflects experimental results that be-
gin testing with a run of Sg system successes while the successes latest configuration

ends testing with a run of Sg system successes. 0

Theorem 3. If the sequence {Qi(d),d > 0} is decreasing, 1 < i < S then the
predictive probability of field mission success, Q{g, p}, is mazimized over {g, ¢} €
C(S,F) by the successes latest configuration and minimized by the successes earliest
configuration, for all feasible (S, F).

Proof. We observe that the successes latest member of C (S, E‘_) dominates all other
members, while the successes earliest member is dominated by all other members.
The results is then an immediate consequence of Theorem 2(2). a

Comment. We note that in the models based on the binomial model in Eq. (5.2)
all members of C(S, F) have the same predictive probability of field mission success
irrespective of the disposition of successes and failures.

Theorem 4. IfII{ > 0,0 < d < D; for some D; > 0,1 < i < S, then during a run
of r system successes, the predictive probability of field mission success approaches
1 at a geometric rate in the number of system successes to date.

Proof. Following a run of r successes, each subsystem data configuration from the
point at which the run starts is (r,0). We use IT* for the posterior for subsystem 4,
which is current at the start of the run. It is easy to show from Eq. (5.7) that the
condition on the prior IT* in the statement of the theorem guarantees that ITj > 0.
By Eq. (5.6) we have that, in an obvious notation, the posterior probability of field
mission success after a run of r successes is

. .y
1T 11y

T m @@y T 0@y

Quf(r,0)} > 10}, = (5.12)
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where inequality (5.12) utilizes the decreasing nature of the sequence {Eg, (%),
d > 0} = {gi(d), d > 0}. From Eq. (5.12) we deduce that the predictive probability
of field mission success for the whole system following the run of » successes is

=51

g=1 =1

>2- H[u “°){ ()}]

=1

Q{(r,0} = HQz (r,0 }>H[1+ IIO){ (1)4

using the inequality between the geometric mean and the arithmetic mean. The
result is a straightforward consequence. O

Comment. We point out that the condition on the prior in Theorem 4 is a perfectly
natural one and simply prohibits giving zero prior probability to some number of
defects, d say, in some subsystem ¢ while giving positive probability to values above
and below d.

The choice of the length of a run required, 7, for a runs test may be assessed by
means of a prior analysis focusing on such key measures as the mean probability
of system survival of a mission in the field following the test; the mean time to
the conclusion of testing; and the probability that the field probability of mission
success at the end of testing is greater than 1 — a;.

Suppose, for example, that we wish to select r to maximize an objective

En{-cT +Qr} (5.14)

where II is the prior chosen, T is the number of tests performed, c is a (suitably
standardized) cost per test and

= 1, for field mission success following T tests
Qr = )
0, otherwise.

The quantify in Eq. (5.14) can be calculated using the computations described in
Sec. 3.3 and is given by

CEEE ;
> {HHi(di)} {~cme(d) +pr(d)} (5.15)
d i=1

for the “r runs” test. A Bayes optimal design within the class of runs tests is
obtained by choosing r to maximize the quantity in Eq. (5.15).

An alternative prior approach to choosing a runs test would choose the smallest
7 to guarantee that the prior-posterior probability of field mission success (following
the test) exceeding some value 1 — a;, say, is at least some value 1 — ap. To describe
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how this might be achieved, we expand the notation in Eq. (3.9) to v,(a|d) to reflect
a conditioning on the initial state d. We write

S

Ayqg, = {i : H Qi(di) > 1~ Otl}
i=1

for the set of defect configurations with a corresponding ﬁeld probability of mission

success at least 1 — ;. The identified design criterion is achieved by identifying the
smallest r with which

> Z{HHz }% ald) > 1-os.

EGAI a; &

Following an r runs test, a posterior probability may focus on, for example, the
construction of a Bayes confidence interval for the probability of field success.
To achieve this, list the sequence of defect configurations in descending order of
]—L_l Q: (d;), the probability of field mission success with the remaining defects d;,
i = .,S. We denote the resulting sequence dY = 0, d(z) d®, and so on.
Let N (1‘, a, D) be the smallest n for which the posterior analysis of the collection
{dV,d?,. d(");; is at least 1 — o, where D denotes the test data. It then follows
that [1, ]—L_l Q:{dl "*P)}] is a Bayes (1 —a)-confidence interval for the probability
of field mission success.

3. Numerical example

Table 1 reports results from a numerical study of the probability of system field
success after a test, which ends with the first occurrence of r successes in a row. The
study elucidates the fact that any prior analysis to determine the test design (i.e.,
choice of r) is likely to be significantly impacted by our beliefs concerning whether
defects are more numerous in the earlier or later stages of the system. The system
consists of four stages. Given d; defects in stage s, s = 1,...,4, the conditional
probability that the system passes one test is []5_, ¢s(ds) where

T(as +bs) T(by+ds)
T(bs) T(as+bs +dy)

with 8, having a beta distribution. Two cases of randomized 6, are considered. In
case A, each 0 is drawn from a uniform distribution on [0, 1] independently for
each stage and test. In case B, 6 is drawn from a beta distribution with mean
bs/(as + by) for

qs(ds ) [Ods ]

(9,.1) for s =1,

)7, 3)fors=2,
(2,b5) = (.3,.7) for s =3,
(.1,.9) for s = 4.



Table 1. Mean of summary statistics for simulations of testing until obtain a run of r successes.

over- Mean of
Mean Mean Mean Mean Mean var the mean
Mean Mean Mean Mean of prob prob prob prob prob surv prob number of
initial#t initial# . initial#  initial# mean that the  that the  that the  that the # in field for  of tests needed
defects defects - - defects defects prob prob prob prob prob suc each surv to obtain r
‘stage stage stage stage # field field field field field ina remaining during  successes in
1 2 3 -4 repl  surv surv> 7  surv>8  surv> 9  surv> 95  row:r  defect test a row
2.75 2.75 2.75 2.75 25 0.96 0.96 0.96 0.84 0.84 3 0.8 A 14.46
(0.00)  (0.00) (0.00) (0.00) (0.00) (0.49)
2.75 2.75 2.75 2.75 25 0.59 0.32 0.32 0.13 0.13 3 0.8 B 14.1
(0.03)  (0.05) {0.05) (0.02) (0.02) (0.64)
.2.76 2.75 2.75 2.75 25 0.74 0.56 0.56 0.31 0.31 5 0.8 B 17.67
(0.02)  (0.05) (0.05) (0.04) (0.04) (0.55)
2.75 2.75 2.75 2.75 25 0.82 0.70 0.70 0.44 0.44 7 0.8 B 21.85
(0.02)  (0.04) (0.04) (0.04) (0.04) (0.61)
field prob
same as
2.75 2.76 2.75 2.75 25 0.91 0.96 0.94 0.69 0.44 7 testing B 21.85
. (0.01)  (0.00) (0.01) (0.04) (0.04) (0.61)
1 2 3 5 25 .95 .95 0.95 0.83 .83 3 0.8 15.09
(0.00)  (0.00) (0.00) (0.00) (0.00) ©.7)
1 2 3 5. 25 0.43 0.12 0.12 0.04 0.04 3 0.8 11.31
(0.03)  (0.02) (0.02) (0.01) (0.01) (0.49)
1 2 3 5 25 0.56 0.28 0.28 0.13 0.13 5 0.8 B 23
(0.03)  (0.02) (0.02) (0.01) (0.01) (0.65)
1 2 3 5 25 0.66 0.44 0.44 0.24 0.24 7 0.8 B 23
(0.03)  (0.04) (0.04) (0.02) (0.02) (0.82)
field prob
same as
1 2 3 5 25 0.87 0.97 0.82 0.44 0.24 7 testing B 23
(0.01)  (0.00) (0.04) (0.04) (0.02) (0.82)
5 3 2 1 25 0.96 0.97 0.97 0.85 0.85 3 0.8 A 14.19
(0.00)  (0.00) (0.00) (0.00) (0.00) (0.72)
5 3 2 1 25 0.80 0.69 0.69 0.38 0.38 3 0.8 B 13.31
0.02)  (0.05) (0.05) (0.05) (0.05) (0.67)
5 3 2 1 25 0.88 0.84 0.84 0.56 0.56 5 0.8 B 17.02
(0.02)  (0.04) (0.04) (0.05) (0.05) (0.84)
3 2 1 25 0.92 0.90 0.90 0.68 0.68 7 0.8 B 20.22
. (0.01)  (0.03) (0.03) (0.05) (0.05) (6.95)
5 3 2 1 25 0.95 0.97 0.94 0.87 .68 7 field prob 23
same as
same as B
(0.01)  (0.00) (0.01) (0.02) (0.05) (0.95)

dad 9g

1D 29 4PaVL)
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In all but three cases, the field probability of system success is 1_[3:1 0.8% ("),
where d(r) is the number of defects remaining in stage s after the test is complete.
The initial numbers of defects in each stage are independently drawn from Poisson
(prior) distributions with the means noted in the table. There are 25 replications
for each case. Displayed are the mean of the expected probability of system field
mission success, together with the means of the probabilities that the probability
system field mission success after the test is greater than or equal to 0.7, 0.8, 0.9,
and 0.95. These values estimate the quantities

s

o > {Hrﬁ(d@-)} 7 (ald)
a€A1-a d \i=1

for r =3,5and 7 and o = 0.3, 0.2, 0.1 and 0.05. We also record the average of the

expected number of tests required to obtain a run of r successes; this estimates the
quantity

S
> {HHi(dz-)} 7 (d).

d

The standard errors appear in parentheses.

The distribution of the 6,, s = 1,...,4 has a great effect on the probability of
successful field performance after the test. In case B, the defects in stage 4 are less
likely to reveal themselves during the test. Thus for case B, the probability of field
success after a test until a run of three successes is smaller than for the case of
uniformly distributed 8,, s =1,...,4.

The initial mean number of defects in each stage also affects the probability of
field success. The case with a mean of five defects in stage 4 has the smallest mean
of the expected probability of field success after a test. The mean of the expected
probabilities of field success after a test until there is a run of seven successes in a
row is 0.66 for this case.

The mean of the expected number of tests needed to obtain a run of r successes
for the cases displayed is somewhat insensitive to the pattern of the initial mean
number of defects in each stage, and the probability of defect discovery during test.

In all but three of the cases the probability of a defect in a stage causing failure
during use in the field is 0.8, which is different than these probabilities during
testing. In the three cases in which the probability of field success is the same
as that in testing, the mean expected probabilities of field success are higher. It
is important to design tests so that they represent field conditions as closely as
possible.

6. Summary and Conclusions

In this paper we consider models of overall system testing to achieve reliability
growth by design defect identification and removal. This is sometimes referred to
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as Test-and-Fiz (TAF). We consider a system with S stages in sequence; if a test
reveals a defect in stage s, the later stages s + 1,...,S are not subjected to the
test. We assume that, at most, one defect is removed per test.

A sequential test plan that ensures that all the stages will be tested at least
r times is to test until there is a run of r consecutive system successes. A system
success means that all the stages operate successfully during the test, which implies
that the propensities to fail of remaining design defects is likely to be small. Results
obtained for a Bayesian model formulation suggest that, while not being Bayes
optimal in a formal sense, a runs test provides a simple and effective test stopping
rule for a range of reasonable cost criteria.

We obtain analytical procedures to calculate the expected probability of field
system mission success after successful completion of a runs test, the distribution of
the probability of system field mission success after a successful runs test, and the
expected number of individual system tests required to achieve a run of r successes,
and hence test termination. Numerical studies indicate that the probability of sys-
tem field success after a runs test can be quite sensitive to the probabilities that
a test activates defects in each of the stages. However, the mean number of tests
required to obtain a run of r successful tests appears to be relatively insensitive to
these activation probabilities.
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