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Abstract: A new piece of equipment has been purchased in a lot of size m. Some of the
items can be used in destructive testing before the item is put into use. Testing uncovers
faults which can be removed from the remaining pieces of equipment in the lot. If t < m
pieces of equipment are tested, then those that remain, m = m — t, have reduced fault
incidence and are more reliable than initially, but m may be too small to be useful, or than
is desirable. In this paper models are studied to address this question: given the lot size m,
how to optimize by choice of t the effectiveness of the pieces of equipment remaining after
the test. The models used are simplistic and illustrative; they can be straightforwardly
improved. © 1997 John Wiley & Sons, Inc.* Naval Research Logistics 44: 623—637, 1997
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1. PROBLEM SETTING

A new piece of equipment has been produced, and is to be tested before being put into
use. An example is amilitary missile. Ultimate testing is done destructively by firing shots.
The objective is to send equipment to the field with as few (design) faults as possible, so
testing is focused on finding faults and removing them; it will be assumed here that once
a fault is discovered it can be removed by change of design or componentry, and hence
that a mode of failure has been permanently removed from all remaining missiles. The
problem: If missiles are bought in lots of m, and t < m are tested, then those that remain,
m = m — t, have reduced fault incidence and are more reliable (the lot or design has
experienced ‘‘reliability growth’’ ), but m may be too small to be useful, or than is desirable.

We address two problems.

(a) Given the lot size, m, how to optimize the effectiveness or lethality of the missiles
remaining after t(<m) are tested by choice of t.
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(b) In the light of a testing program of length t, how does t depend upon m; or how
does lot size affect the final product’ s quality, where quality measures the probability
of overall success in use? This means that both reliability and other suitability
measures are combined with accuracy and target destination probability and other
effectiveness measures to obtain an overall success probability when the missile is
fired. The focus is entirely on maximizing operational capability, given the lot size
m. Other calculations can be made to address questions of final, after-test missile
adequacy to meet military needs particularly when compared to alternative, e.g.,
currently employed, options. The question of characterizing the uncertainty with
which such a comparison is made is not thoroughly addressed here.

Related issues arise in reliability growth testing; cf. Ascher and Feingold [1], Balaban
[2], Barlow and Scheuer [ 3], Barr [4], Bhattacharyya, Fries, and Johnson [5], Calabria,
Guida, and Pulcini [6], Fries [9], Gross and Kamins [10], Jayachadran and Moore [13],
Mazzuchi and Soyer [14], Olsen [15], Pollock [16], and Woods [17] . However, in tradi-
tional reliability growth testing, there is no constraint on the number of tests allowed.

2. INITIAL MATHEMATICAL MODEL

Suppose a missile design initially contains D, potential bugs or faults. If present, each
of these independently inactivates a missile flight with probability p, or does not operate
detrimentally with probability 1 — p. It is a considerable simplification to assume that p is
the samefor al fault/bug types, and that p does not depend on flight time or other conditions,
but this simplification allows a quick initial evaluation. Note that if m missiles are built as
described, never tested but fired, then the number, S, of (later) successful flightsis, given
D, distributed binomially with probability of success (1 — p)P°e; consequently, its expecta-
tion is

E[S]Do] = sm(1 — p)®, (2.1)

where sisthe probability that amissile with no serious faults survives and operates properly.
Various other meaningful measures can also be evaluated.

2.1. Testing

Suppose t missiles are test-fired. If some fail it is presumed that (a) the particular faults
causing failure are identifiable and (b) they are successfully removed from the remaining
missiles, leaving m — t asyet unfired and potentially useful in actual operations. Furthermore,
these are now more reliable, but there is obviously a tradeoff involved in the choice of t.
Thus after t are tested (2.1) turns into

E[SID] = s(m - t)(1 - p)>, (22)

where D is the number of potential faults remaining after t test firings. It is assumed that
we are only removing single ‘‘root-cause faults’ that can themselves bring about missile
failure, whereas there actually could be a complicated interlocking sequence of fault failures,
and a postmortem could possibly identify them, leading to their simultaneous removal. This
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optimistic situation is disregarded here. We also represent, in the parameter s, the influence
of nonremovable faults: items that simply fail but cannot be design-rectified. Existence of
such can slow down the reliability growth process by stimulating search for the unattainable.
For the present this bit of realism is ignored, as is the possibility that identification of a
removable fault leads to replacement by an item of higher p-value than that replaced! The
present model is optimistic in that a new item is essentially compatible with s, not changing
it by much.

2.2. Property of a Test of Fixed Length t

In order to choose the test period t, one can compute the expected value of those that
survive later (active, combat) flights. This entails removal of the condition on D, in (2.2);
one can then pick the t-value so as to maximize that expectation. This is one answer to
“*how much is enough testing’’ in the present context.

Suppose D, bugs/faults are originally present, and we ask how many are present after
time t. The probability that any one is still present is (1 — p)'; by independence D; is
binomial:

Do
P{D. = k| Do} = < K >((1 - P - (1-p)H>" (23)

with generating function
E[z”]Do] = (z(1 - p)' + (1 = (1 = p)")". (24)

In turn, the condition on D, can be removed; if gp,(z) is the generating function of Dy,
then

E[z%] = go,(1 - (1 - p)'(1 - 2)). (2.5)
In Subsection 2.3 we consider Poisson-seeded potential faults. In Subsections 2.5 and

2.6 we consider potential faults having a discrete uniform distribution and a discrete uniform
distribution with a random range.

2.3. Potential Faults Are Poisson-Seeded

If Dy is assumed Poisson with mean \, then directly it is seen that D, is Poisson with
mean A\ (1 — p)', which has generating function

E[z%] = e M2 (2.6)

and (2.2), the expected number of successful missions after testing for timet (where 0 <
t=m):

E[S] = s(m — t)e PP, (2.7)
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Thus if al parameters (except s) are known, or estimated, we can discover the value of t
= toe (M) that maximizes the expected number of missiles sent to the field that will function
properly in use. Thus we have an initial approach to a particular problem of predetermining
test duration so as to ‘‘optimize’’ a candidate measure of mission success.

Note that the distribution of D, can be regarded as a Bayes prior on an unknown parameter.
Then the prior’'s parameter \ can be obtained by combining expert judgment and data on
previous tested and fielded comparable systems. This prior can be updated with each test
episode using Bayesian procedures. This approach is explored in Section 3.

24. A Max-Min Policy for Poisson-Seeded Faults

Suppose nature is malevolent and for any number of tests conducted will choose p so as
to minimize the expected number of successes after performing t tests. Let s = 1, and
assume Dy is Poisson with mean \. Let

f(p) = InE[S]
=In(m—1t) — A(1 — p)'p. (2.8)

Setting (d/dp) f(p) = 0 and solving for p results in the minimizing p, pmn = 1/(1 + t).
For this value of p

t \' 1
Emn[S] = (M — t)eXp{_)\<l_+t> m} : (2.9)

A criterion to choose the number of missiles to test is to pick the number of tests, t, that
maximizes the above. We will call this policy the max-min policy. Such a number must
befound numerically; it isof interest to compareitsimplicationsto those of other procedures.

2.5. Alternate Potential Fault-Seeding Distribution

It is plausible that if a system reaches later testing stages its propensity to contain many
faults is low. Perhaps it is a modification of a previous design (an upgrade in military
parlance) with only a few subsystems being candidates for serious faults. In this case the
Poisson model, which admits arbitrarily many faults, might well be replaced by one that
absolutely limits the number of active faults, so we investigate one of the simplest aterna-
tives: a discrete uniform for D, over (0, 1, 2, ..., d). Other features remain as before.

The generating function of the discrete uniform is

1 8 1 -zt
gDO(Z) = d+1 dgo 2% = m (2.10)
so that
T S I e € e € B O O Nl
E[S] =s(m-1t) 7~ [ T o ] . (2.11)
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For numerical illustration we match means to that of the Poisson: d/2 = \; this will not
always be possible for small \ since d/2 = 1. To compare the expected number of successful
missions after testing using t missiles for the Poisson fault-seeding model and the discrete
uniform fault-seeding model, first consider the functions

d 1/d

fE(d)=e_d/2a= [1—5a+§<5a>2— "':| (212)

and

() = -2 [1—(1—a)d*l]

d+1 a
1 1 d+1 kd-i—l
:d+1[5[_kzl(_a)< k )H
2[1_a_d+azm_...], (2.13)
2 3l

where a = (1 — p)'p. Thus, for areasonably small a = (1 — p)'p, the expected number
of successful missions after testing will be approximately the same for both models. Examine
the numerical examples to follow to see that choice of the prior’s specific form may be of
secondary effect.

2.6. Second Alternative for Fault-Seeding: Discrete Uniform with Random Range

Suppose the previous setup is generalized by letting d, the range of the uniform, be
another arbitrary discrete distribution, denoted { p,; k=0, 1,2, - - -}, e.g., but not necessar-
ily Poisson. From (2.10)

1 1

E[zD0|d]=d+ll_Z(1—zd“) (2.14)
SO
l % l_zk+1
E[z%] =
N M
1 - ! k ‘ k
=1 > ypedy — | (V) pedy
= 0 0
1 1
= dw] , 215
([ by aw) (215)

where p(w) is the generating function of { p.}.
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If p(w) = e ") Poisson, then we get

1
E[z%] = ———— (1 — e " 9) (2.16)
wl-2)
Now introduce z = 1 — (1 — p)'p as before:
E[(1-p)7] = __r (1 — e #Pi=P)Yy, (2.17)
u(l-p)p

In order to match means, it is easiest to calculate
E[Do| d] = d/2 sothat u = 2E[Dy]. (2.18)

Thus, substituting (2.18) into (2.17) for E[D,] = d/2 and letting a = p(1 — p)' results
in

El(1-p)°] = = (1 - e ™). (2.19)

Comparing (2.19) and (2.12), it is seen that the expected number of successful missions
after testing for the Poisson fault-testing model will be less than that for the discrete uniform
with Poisson random range.

2.7. Numerical lllustrations and Implications

The meaning of (2.7) isrevealed by studying some special cases. Figures 1 and 2 suggest
that while the optimal value of test time certainly depends upon the parameter values, which
are unknown or must be estimated, the optimum values remain in arelatively narrow range,
at least over the range of parameter values studied. For what seems to be plausible values
the numbers proposed for test are a smallish fraction of lot size, m. There is a helpful
generd insight: If p, the probability of fault activation, is relatively large, then a relatively
small test tends to remove many potential faults, leaving the field reliability high, whereas
asmaller p-value requires somewhat, but not substantially many, more, since leaving low-
probability offendersin place is relatively undamaging. The max-min policy for A = 5 and
m = 100 is to test 13 missiles with resulting expected number of successes 75.9. The max-
min policy for A = 5 and m = 500 is to test 29 missiles with resulting expected number
of successes 442.5. Figures 1 and 2 show that the max-min policy is (not surprisingly)
somewhat conservative.

3. SEQUENTIAL DESTRUCTIVE TESTING:
MYOPIC BAYESIAN UPDATING

With the exception of the max-min analysis given in Section 2.4, the previous analysis
assumes that the design defect failure probability p is known, or at least that its value may
be satisfactorily approximated off-line from data for analogous systems, and then treated
as ‘‘known.”’ Suppose, however, that data are available sequentially on the number of
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Figure 1. Average number of successes in remaining missiles. Poisson number of faults with mean
LAM: total number of missiles = 100, LAM = 5.

design defects that were revealed on an initial set of t € (1, 2, - - -) test firings of the
missile in question. We show that such data can be used to provide a sequentially updated

inference concerning p, and thus to decide when further testing is not justified. In Subsection
3.2 we discuss a criterion which compares the expected number of successes with the
current posterior distribution of p with that if we look forward to doing one more test. In
Subsection 3.3 we discuss the criterion which is to test until al remaining (untested)
missiles will be successful with a preselected probability. The problem we discussisrelated,
but not identical to, much work on sequential sampling and decision making. See in particu-
lar Chernoff and Ray [8] and Chernoff [7]; Yang, Wackerly, and Rosalsky [18] is also

relevant.

The method described depends on these factors inherent in the basic model:

D, = the initial number of design defects that exist in the missile system,

# = the probability a fault causes a failure in a missile,
B, = the number of faults discovered by the first test (assume al the faults are repaired

upon discovery).

As previoudly, let m be the total number of missiles. Assume
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Figure2. Average number of successesin remaining missiles. Poisson number of faults with mean

LAM: total number of missiles = 500, LAM = 5.

Then

Let

d
P{By=Db;|Dy=dp,0 =p} = <b0>pb1(1 — p)do*bl, b,=0,...,dos, (31)

1

“A\ydg
e N -01,... (32)

P{Do:do}: da do—
0-

P{6 € dp} = f(p) dp. (3.3)

P{6 € dp, B, = by, Do = do}

—\p b, _ dy—b; a—A(1-p)
= f(p) ° b(l?p) (M1 (dr?]_ bj dp. (3.4)

D; = Dy — By, the number of remaining faults; then from (3.4) it follows that
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by — d
P{9 = dp, B,=Db, D, = Jl} - f(p)e—xp ()E)p? e Mi-p) [)\(16—|p)] dp
-

1.
and

P{9 Edp, Ijl=d—1|51= bl}

_ d; @—M1-p)
= K(b) f(p)e w(np)n N P2E 7

dp, 35
@ p (3.5)
where K(b,) = [f; f(p)e p" dp] *. Similarly,
P{HEdpl BlzblvBZZbZI"'ka:bkv Ijk:(Tk}
— =\ ()\p)b1 —\(1-p) [)\(1 — p)p]b2 .
=f(pe ™ b,! © . b,! %
% efx(lfp)k’lp [)\(1 - p)kilp] i e—)\(l—p)k [)\(1 : p)k]ak dp (3.6)
b,! d! '
where D, = Dy — (B, + -+ + By), the number of remaining faults after k tests.

3.1. The Expected Number of Successes after t Tests

A missile is called a success if no faults occur during its launch or flight. Let § = the
number of successful missiles if no testing is done (no faults are fixed). Then

E[S]

E[E[S| Do, 6]]

A%
m| Y (1-p)he ”—d - f(p) dp
(oM

0 dy=0

[ 5 e AP

I
0 dy=0 do!

f(p) dp

mfo e ™f(p) dp. (3.7)

Suppose one test is done and B, = b, faults are discovered and repaired; let S, be the
number of successes in the remaining (m — 1) missiles:

E[SB, - by
—m-1 [ 3 @ pyreen ROyt pre ) ap
0 dy=0 0

— (m-1) f e MPPK (by) f (p)e P (Ap)™ dp. (38)
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Similarly, if k tests are conducted and B; faults are discovered and repaired on the i th test,
the expected number of successes in the remaining (m — k) missilesis

E[S(|Blzb1,...,Bk:bk]

1
= (m— k) f e’“l”’)k”K(bl, ..., b)f(p; by, - --b) dp, (3.9

0

where
Ap) P A1 - b,
f(p; by, -+ -b) =f(p)e ™ ( b? e—)\(l—p)p[ ( bz!p)p] 5
X ef)\(lfp)kflp [)\(1 — p)kilp] P
b.!

and

K(bl,...,bk):[f f(p; bl,...,bk)dp] )

3.2. The Expected Number of Successes after Looking Forward
to Doing One More Test

Before any tests are conducted consider the expected number of successes if one test
were conducted. Let Si be the number of successes using the remaining (m — 1) missiles.
From (3.4)

E[Sf; B, =b, d € dp]

- - 21(p) 0 5 (1 - RO e gp
~ (m- 1)f(p) ﬂ ep{ ~\(1 - p)p} dp. (3.10)
Thus,
E[Si; 0 € dp] = (m — 1)f(p) exp{ —N\(1 — p)p} dp (3.11)
eisi] = m- 1) [ 1(p) ew( 11 - )P} b (312)
Suppose k tests have been done which resulted in B, = by, ..., B, = b, faults being

discovered and repaired. Consider the expected number of successes if one more test were
conducted. Let S be the number of remaining successes if another test is conducted. From
(3.6) it follows that
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E[S;,B]_:bl, Bz=b2,...,Bk=bk,06dp]
=(m—(k+1)f(p; by, ..., b) dpexp{ —N\(1 - p)“p}, (3.13)

where

£(p: bu, ... b) = F(p) SR app ML = PRI

b,! b,!
_ nYk-1pn7be
X e—)\(l—p)k’lp [)\(1 p) p] ' (314)
by!
E[S;|Bl=bl, Bzzbz,...,Bkz bk]

Mok ) [t (piby . D) eR( M p)pbdp

Jy f(pi by, ..., b dp

A stopping rule might be to stop testing at ts tests where

ts =min{k: E[S|B;=by,...,Be=b] >E[S{|Bi=by,...,Bc=h] + C},

where C is a constant chosen by the analyst; possibly C = 0. We will cal this rule the
(myopic) Bayes rule.

3.3. The Probability of No Failure in the Remaining Missile Firings
after Conducting t Tests

An alternative procedureisto test until all remaining (untested) missileswill be successful
with a preselected probability. After t tests, 0 = t = m, the probability all the remaining
missiles are successes is

c e A1-p)! M1 - p)*

P{Shc=m-1t} =3 o [(1-p)fm™
k=0 :
=exp{-NM1-pT1-(1-p)"']} (3.16)

if pand \ are known.
If X\ is known but p is not known, then

P{Sm,t=m—t,Bl=b1,...,Bt=bl,Dt=k,9€dp}

=f(p; by, by ..., b)(1 - p)"‘”‘“)e‘”(l‘p)‘[}\(1k;llo)t]k dp, (3.17)

where f(p; by, ..., b) isgiven by (3.14); withk =t

f(p; by, by ..., b)

= f(p)e_)\p (L)bl e—k(l—p)p[)\(l — p)p] bz R % e_)\(l_p)})—l[)\(l — p)tilp] bt .
by! b,! by!
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Thus,

P{Swec=m—1t,B,=by,...,B =b, 8 € dp}
= f(p; by, byr -+, b) exp{ —\(1 - p)TL - (21— p)™'1} dp (3.18)

and
P{Swi=m-1[B,=by,...,B =Db}

- K f F(pibe, ... b) exp{~A(1— p)[L— (1— p)™Y} dp,  (319)

where K = [ [ f(p; by, ..., b)] %
A rule to stop testing may be to do t» tests, where

to = min{k:P{Ssx=m—k|B,=by,...,Bc=h} > a}, (3.20)

where « = 0.8, or 0.9, etc.

Numerical integration is required to carry out the above procedures, e.g., to evaluate
integralsin (3.8), (3.9), (3.12), (3.15), and elsewhere. We have used Simpson’s rule with
up to 10th-order difference correction for a step size h:0.0001 (cf. Hamming [11]) as
implemented in A Graphical Statistical System, AGSS [12].

3.4. Numerical Examples

Figure 3 presents the expected number of successful missile flights after having conducted
t tests as a function of t for a series of design fault discovery. There are three faults. One
fault is discovered at test 3; one at test 4; and one at test 6; if no tests are conducted, the
number of faults discovered is 0. The prior distribution of the number of faults at time O
is assumed to be a Poisson distribution with mean X = 3. The prior distribution for the
probability of fault discovery, 6, is uniform over [0, 1]. The number of missiles in the lot
m = 25. The solid line plots the expected number of successes with no additional tests,
(3.7)—(3.9). The dotted line plots the expected number of successes if one additional test
is considered, (3.15). The dashed line plots the expected number of successes if a fixed
number of tests are conducted for A = 3, and probability of discovery having the prior
distribution, that is, from (2.7),

E[S] = (m— 1) f e PP (p) dp. (321)

A criterion which maximizes the expected number of successes for a fixed number of
tests would stop testing after four tests. A criterion which stops testing when doing one
more test would not result in a larger expected number of successes would aso stop after
test 4. Both criteria would miss the one fault that does not appear until test 6. The max-
min policy obtained using (2.9) for m = 25 and A = 3 would also test four missiles.

Figure 4 displays plots of the probability that all (m — t) remaining missiles are successes
after conducting t tests. There are 25 missiles initially. The prior distribution of the initial



16
T

12
T

Gaver and Jacobs: Testing for Reliability Growth: A Missile Example 635

N
LN
SOLID=E[NO. SUCCESSESINO MORE TESTING] *
DOT=E[NO.SUCCESSESIONE MORE TEST]
DASH=E[NO. SUCCESSES] FOR FIXED NO TRIALS
DOT—DASH=MAX MIN
V=NO. FAULTS DISCOVERED

VIV VY Y 9V VIV Y Y Y VIV VYV VYV VIV ¥

5 10 15 20
NUMBER OF TESTS

Figure 3. Number of faults = 3, binomial discovery p = .3. BetaA = 1, B = 1 prior for p; faults
prior Poisson 3.

number of faultsis Poisson with mean 3. The prior distribution for the discovery probability
is uniform over [0, 1]. The solid line displays the probability of al remaining missiles
being successes as a function of the number of tests using the same fault discovery series
and (3.19) using the posterior distribution of the discovery probability. The dotted line is
the probability of all remaining missiles being successes as a function of the number of
tests using the prior distribution of the discovery probability (fixed number of tests)

1
P{S=m-1t} = f e MR I=A=n™ T £ (p) dp. (3.22)

0

Consider the decision rule to test until the probability that all remaining missiles are
successesisat least y for y = 0.8. For the uniform prior, the fixed number of tests calculation
would test 6. The Bayes calculation would test 12. Both criteria recommend alarger number

of tests than the expected number of successes criteria

4. DISCUSSION

Our model directly addresses a real challenge faced by the testing community: to test
efficiently with operational needsin mind. The present formulation islimited and simplified,
but suggests the kinds of results to be expected, and that can be practically obtained. In
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Figure 4. Number of faults = 3, binomial discovery p = .3. BetaA = 1, B = 1 prior for p; faults
prior Poisson 3.

particular the max-min approach (Section 2.4) provides a conservative assessment of a
defensible conservative number of tests that one might consider making. This approach is
quite robust to aspects of the model formulation (it actually accommodates different fault
failure probabilities). The sequential myopic Bayes approach (Section 3) justifies adjust-
ment of test effort to actual data obtained; it probably requires further detailed devel opment
before being practically applicable, but the needed modifications are understood, and are
being made.

Implementation of the present approach requires a certain amount of computing, all within
the range of desktop PCs or laptops. It is likely that user-friendly spreadsheet redlizations
of the current software can be developed.
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