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Purpose of this talk

■ Describe a new, simple solution 
method for two-stage stochastic 
integer programs

■ Motivate and illustrate with a particular 
stochastic, network-interdiction 
problem (will consider one other, too)

■ Illustrate two main thrusts of my 
research, interdiction and SP.
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First: Other work

■ Interdiction of communications 
networks: Physical and cyber-attacks

■ General models and solutions for 
system interdiction and defense

■ General theoretical work on SPs
■ Applications of SP:  Sealift 

deployments subject to bio-attacks
■ Integer programming
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Generic network interdiction 
problem

■ Using limited resources, attack an 
adversary’s network so as to minimize 
the functionality of that network (to the 
adversary).

■ Networks: Road, pipeline, comm
■ Functionality: Max flow, shortest path, 

convoy movement, path existence
■ Attacks: Aerial sorties, cruise missiles, 

special operations
■ Can generalize: “system interdiction”
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Max-flow interdiction

Basic Deterministic Model
on G=(N,A) with artificial arc a = (t,s)

where                                   , and…
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A Simple Example
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Suppose we have enough resource 
to interduck any two arcs
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Max-flow interdiction

Converts to a MIP (well, IP actually)
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Interdiction under uncertainty

■ Uncertain success or data, SMFI:
( )

( )

( ) ( )
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Alternative formulation

■ Note: Deterministic problems are NP-
complete.  It’s #P-complete to evaluate 
Eh or Eg for fixed x:  These stochastic 
problems are really hard. 
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SMFI: An instance of a 2SSP
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Probability of kill

■ Assume pk = E[Ĩk] is known
■ Weaponeers know this stuff!
■ Well…
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Bound on z*,  pessimistic

■ New soln methodology needs bounds
■ From Jensen’s inequality, obtain a 

global upper bound given a “good”   : 

■ Can also use probabilistic bounds
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Bound on z*,  pessimistic

■ Actually, because interdictions are 
binary, and successes/failures are 
binary in SMFI, we can reformulate the 
upper-bound problem and minimize 
that bound via a MIP.
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Bound on z*,  optimistic

■ A lower bounding MIP:
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Bounds on z*: Comments

■ Bounds can be improved by 
expanding in terms of conditional 
probabilities, e.g., by conditioning on 
the number of successful 
interdictions.

■ Can use probabilistic bounds; may be 
necessary for other 2SSPs.

■ But, keep it simple for now. 
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Solution methodology, outline

■ BOUND: Find a global upper bnd 
■ ENUMERATE all solns    s.t.                        

call these candidates 
■ SCREEN the candidates (Monte Carlo 

and statistics) to identify the best, or 
the best few 

■ TEST            to determine quality
■ (Or maybe Partially Enumerate, Then 

Screen: PETS.  Or, maybe Bound, 
Enumerate, Then Screen: BETS. )
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Fundamental theorem for PE

■ Theorem 1:     can be optimal for SMFI 
only if                                                         
Proof: Obvious.  QED

■ Theorem leads to finding a set of 
candidate solutions           using the 
algorithm on the next slide.

■ For simplicity, assume that the set of 
feasible interdiction plans defined by X
has cardinality constraint:
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Alg. to find candidate solutions

1. ← ∅; Find a good  
2. Compute ub      given     (or optimize)
3. Solve                              for            

4. If              print and halt;
5. Add      to 
6. Add constraint

to constraint set and go to 2;
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Alg. to find candidate solutions
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A better enumeration algorithm

( )
(Or optimize)
Compute , [ ]ˆz h E=′′ x Iz′′

z′

Find a good x̂

( )s.t. , [ ]ˆ ˆ zX z g E ′′≤∈ =′x x I

Use B&B-like procedure to enumerate all 
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Screening candidate solutions

For small R we can compute 
exactly for each           : There are only 
2R ways for R attempted interdictions 
to succeed or fail.  Can solve SMFI 
exactly in this case.
Will describe general statistical 
screening procedures because they 
are necessary for most applications 
of BEST, including more complicated 
interdiction problems (and larger R).
Seeking a near-optimal set 

( ),ˆ kEg x I
ˆ k ∈x X

⊆*X X



22

We could do this:

■ Sample the             for each           to 
obtain independent estimates

■ These      are distributed with 
independent t-distributions

■ Reject     that correspond to      being 
“too large”  
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But we will do this:

■ Using CRNs, sample the             for  
each          to obtain estimates

■ Order: 
■ Create difference r.v.s 
■ These       have a joint t-distribution, 

approximately, and we could exploit 
that, but let’s keep things simple, so …
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And this:

■ Reject      as “bad” if confident that           
■ That is,  put                  if not confident that 

■ Let       be the sample s.d. for estimate

■ “Accept”      if  the                            confidence 

interval on       covers 0: 
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So:

■ Overall, we’ll be 100×(1– α)% confident 
that we have not rejected a good 

■ Above procedure depends on Boole-
Bonferroni inequality: not very strong.

■ On the other hand, we used CRNs in 
comparing the     so we have employed 
a useful variance-reduction technique.  
(1 or 2 orders of mag. improvement)

■ Many variants/improvements possible

ˆ k ∈x *X

ˆ kx
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Testing step

■ Not an issue if K* = 1.
■ Will not cover in this talk, except to 

say that, empirically:
■ All near-optimal solutions in this talk’s 

test problems are within 2% of optimal 
with 95% confidence.
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Advantages to BEST

No large approximating problems 
with multiple scenarios to solve
For the most part, we’re solving 
simple bounding models and using 
Monte Carlo to evaluate 2SSPs with 
fixed first-stage variables
No complicated decompositions 
needed
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SMFI, computational results (1)

■ Grid network

■ 100 samples for each 
■ uk is uniform[10,100], pk=0.9
■ Only resource constraint:
■ Upper bound optimized
■ VR for screening
■ 1 GHz laptop using GAMS/CPLEX

s t

k
k A

x R
∈

≤∑

ˆ kx



29

SMFI, computation results (2)

■ 95% confidence 
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Stochastic plant location (SPL)
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■ Uncertain demand for a single product
■ xi = 1 if plant i to be built, else 0
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SPL, computational results (1)

• 10 candidate plants, choose 5
• 20 customer zones (rvs)
• Demands uniform, ±v% of mean
• Probabilistic UB, Jensen LB =784.7
• v=10: ub=801.9, K=2, K*=1, T=15.6
• v=20: ub=840.0, K=5, K*=1, T=17.4
• v=40: ub=939.9, K=28, K*=1, T=29.7
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SPL, computational results (2)

• 20 candidate plants, choose 10
• 50 customer zones (rvs)
• Demands uniform, ±v% of mean
• Probabilistic UB, Jensen LB =958.8
• v=10: ub=  966.2, K=3, K*=2, T=133
• v=20: ub=1006.3, K=72, K*=5, T=255
• v=40: ub=1155.1, K=51, K*=17, T=560ª
• ª LB improved to 1097.8
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Extensions

BEST (PETS, PEST, BETS?) will work for 
any 2SSP provided that
– First-stage variables are binary or integers of 

modest magnitude,
– An optimistic bound is not too hard to 

compute, and
– For fixed x, Monte Carlo sampling is efficient.

■ For optimistic bounds, we use 
Jensen’s ineq. and restricted recourse

■ Often, the global, pessimistic bound 
will be probabilistic
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Generalizations

■ 2nd-stage integer variables OK
■ Does not depend on distributions: 

If you can generate the rvs, BEST 
works

■ So, dependent rvs OK
■ Probabilistic LBs?
■ Multi-stage???



BEST

To End
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Other work

■ Interdiction of communications 
networks: Physical attacks and cyber-
attacks

■ General models for system interdiction 
and defense

■ General theoretical work on SPs
■ Applications of SP:  Sealift 

deployments subject to bio-attacks
■ Integer programming


