Stochastic Network
Interdiction



Purpose of this talk

= Describe a deterministic max-flow
network interdiction problem

x Describe stochastic variants

= Provide a new, simple solution
methodology for the stochastic
problems

= Discuss extensions to other
interdiction problems and more
general two-stage stochastic programs



Generic network interdiction
problem

= Using limited resources, attack an
adversary’s network so as to minimize
the functionality of that network (to the
adversary).

= Networks: Road, pipeline, comm

» Functionality: Max flow, shortest path,
convoy movement, path existence

= Attacks: Aerial sorties, cruise missiles,
special ops, interception

= Can generalize: “system interdiction”




Max-flow interdiction

Basic Deterministic Model
on G=(N,A) with artificial arc a = (¢,s)
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Max-flow interdiction

Converts to
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Interdiction under uncertainty

= Uncertain success or data, SMFI:

.
min £2(x)

where Z(x) = n;séc v,

s.t. Flow balance, and
OSyk Suk(l—ikxk)D/ﬂ vl a

-~ []1f interdiction of £ is successful
where [, =[]
[ 0 otherwise



Probability of kill

= Assume p, = E[/,] is known
= Weaponeers know this stuff!
s Well...



Bound on z*, pessimistic

= New soln methodology needs bounds

= From Jensen’s inequality, obtain a
global upper bound given a “good” X :

z*< EZ(X) forany 0 X
<z (%) (=z%)
= max y,
s.t. Flow balance in y
0<y, <u,(1-E[[,]15)0 A4 a

= Can also use probabilistic bounds



Bound on z*, optimistic
= Lower bound:

z*= 7 (x)

o
< min z(x)
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Bounds on z*: Comments

» Bounds can be improved by
expanding in terms of conditional
probabilities e.g., by conditioning on
the number of successful
interdictions.

= Can use probabilistic bounds.

= But, keep it simple for this talk.
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Solution methodology, outline

s Partial Enumeration: Find all x that
might be optimal by using the bounds.
This set of candidate solutions is X.

s Then Screen: Use Monte Carlo
screening methods to identify the best,
or the best few X[1X.

» PETS
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Fundamental theorem for PE

= Theorem 1: X can be optimal for SMFI
only if z(X)<z*.
= So can find a set of candidate

solutions using the algorithm on the
next slide.

» For simplicity, assume that the set of
feasible interdiction plans defined by X
has a cardinality constraint:

bR
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Alg. to find candidate solutions

P

1. X = 0; Compute global UB z*;
2.

Solve z' = Ianl)I(l z(x) for &5 /* z'=z(R) */

If (z'>z*) print X and halt;
Add % to X;
Add constraint ) x =<R-I

k|)’(\fk =1

to constraint set X and go to 1;
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Alg. to find candidate solutions

Find good X
z* C k= = (R
ompute z* =z (%)
A
’ Compute z' = min z(x
z pute z' = min z(x)
XZ£X,

XZX,
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Screening candidate solutions

For small R, can actually compute Ez
exactly because there are only 2R
ways that R attempted interdictions
can be successful or fail

But, will discuss and illustrate
statistical screening procedures
because they are necessary for
typical applications of PETS
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More on screening
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Advantages to PETS

No large approximating problems
with multiple scenarios need be
solved

For the most part, we’re solving
simple bounding models and using
Monte Carlo to evaluate TSSPs with
fixed first-stage variables

No complicated decompositions
needed
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Computational results (1)

Grid networks

100 samples for each X

u, is uniform[10,100], p,=0.9

Only resource constraint: ) x; <R
K]

500 MHz laptop using GAMS/OSL
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Table of results

10 by 10 grid, |[N|=102, |A|=304

>

R

LB

Zbest

UB

Num.
Soln.

Good
Solns.
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Computational results (2)

10 by 10 grid, |[N|=102, |A|=310
95% confidence

R| LB | zpest | UB | Num. | Good
Solns. |Solns.

6(124.1{129.3|133.7| 6

7198.6 [103.3{108.8] 20

8|1 743 |79.6 | 84.5 | 27

9[553(161.9]|66.8| 41
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Extensions

» PETS will work for any TSSP provided

that
— First-stage variables are binary or integers of
modest magnitude,
— An optimistic bound is not too hard to
compute, and
— For fixed x, Monte Carlo sampling is efficient.

= For optimistic bounds, we use
Jensen’s ined. and restricted recourse

=« Often, the global, pessimistic bound
will be probabilistic
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Comments and Conclusions

= New, simple technique to solve
stochastic network interdiction
problems

= Generalizes to a broad class of TSSPs
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