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1. Introduction
The purpose of this note is to provide an overview of the most common

techniques used for obtaining summary statistics and producing forecasts of economic
data.  Also presented in this note is the underlying theory for the statistical analyses
and regression approaches.  In addition, step-by-step instructions are presented on
how these procedures can be performed in Microsoft Excel.  As a result, this
document can serve both as the theoretical and practical foundation for forecasting
economic variables as part of the Multi-Year Budgeting Model of the Russian
Federation.

Two types of analyses can be performed to develop forecasts of  economic
data.  Expert analysis (formally known as qualitative analysis) relies on the knowledge
of experienced analysts to produce forecasts based upon the analysts’ familiarity with
historical trends in the data.  Quantitative analysis, on the other hand, relies on
economic and statistical theory to develop models and forecasts for economic
variables.  Neither method is mutually exclusive, and are often used together to
produce more reliable forecasts than could be produced exclusively by either method.

Qualitative analysis methods, or expert analysis, will not be covered in depth
in this note.  However, it is often necessary to rely on expert analysis because
frequently historical data is absent or incomplete.  While qualitative methods can
produce reasonably accurate forecasts, whenever possible, quantitative methods
should be used to supplement the qualitative analysis process.  Rather than viewing
quantitative analysis as a replacement of the current use of expert analysis, one should
consider quantitative analysis techniques as a set of tools that can readily generate
forecasts based on objective statistical methods whose principles are widely known
and transparent.  In this manner, the ability to produce accurate forecasts for variables
of interest is substantially enhanced.

The remainder of this note is organized into five sections.  Section 2 provides
a general overview of the statistics and forecasting techniques presented in this note.
The theoretical background for these techniques is presented in Section 3 (Statistics)
and Section 4 (Regression Analysis).  The remaining sections (Sections 5 and 6)
provide instructions on how to perform the reviewed analyses in Microsoft Excel.
Thus, this note presents an in-depth review of the relevant theory, while also allowing
readers who are already familiar with the theoretical background to immediately
advance to the application in Sections 5 and 6.
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2. Overview of Statistical Methods and Forecasting
Techniques

A wide variety of techniques can be used to develop forecasts for the
economic variables or “driving variables” for the Multi-Year Budget Model of the
Russian Federation.  Invariably, the best approach is to develop forecasts for the
relevant variable using several different methods and then to evaluate the results
provided by the different forecasting methods.  In this manner, one can identify the
most suitable way to estimate each variable of interest.  This section provides a non-
technical overview of the estimation techniques covered in this note.  The theoretical
background of each approach is considered in more detail in Sections 3 and 4, while
the use of these techniques in Microsoft Excel is discussed in Sections 5 and 6.

2.1 Expert Analysis

Expert analysis, sometimes referred to as qualitative analysis, can be a valuable
analytical tool in a variety of situations; the value of an individual with long-standing
experience with the economy should not be discounted.  Expert analysis is often relied
on to produce forecasts when the underlying data is incomplete, suspect, or not of
sufficient length to develop a forecast for the forecast period of interest.  For example,
few economic models produce accurate estimates of the economic growth rate for a
multi-year framework.  As a result, estimates for this variable are often produced an
expert economic forecaster or by reaching consensus among a group of experts.

While expert analysis can produce reasonably accurate results, often more
accurate estimates can be produced when expert analysis is used in conjunction with
quantitative forms of analysis. 

2.2 Statistical Analysis

Basic statistical methods can be applied in a variety of situations and often
produce results that are as reliable as more sophisticated methods of analysis.  

A straightforward example of the use of statistical techniques could be the
projection of the rate of economic growth.  Historical data could be used to estimate
the average growth rate for the Russian economy for the past several years, and it
could be assumed that the economy will grow at this rate in the medium term.  On one
hand, this approach is very intuitive and does not require significant effort by the
analyst. On the other hand, the accuracy of this estimation technique is highly
dependent on the stability of the economy, as the estimate does not capture the trends
over time in the variable under investigation.  In addition, the accuracy of this estimate
is compromised by the fact that it is not based on the underlying forces that drive
economic growth.

Despite these weaknesses of basic statistical estimates, the use of descriptive
statistics allows the analyst to pose formal hypotheses and validate them using
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Figure 1: Example of Regression Analysis
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scientific and objective methods.  As a result, the use of elementary statistical analysis
is an important complement to expert analysis in the process of making multi-year
economic and fiscal estimates. 

2.3 Ordinary Least Squares Regression Analysis 

Regression analysis is an extremely useful procedure that quantifies the
relationship between one variable (the “dependent” variable) and one or more other
“independent” variables.  For example, we could employ regression analysis in the
context of the revenue estimation to quantify the relationship between the amount of
revenue collections for a certain tax and one or more variables that  -- directly or
indirectly -- influence the level of revenue collections.   

A simple example may be illustrative.  Figure 1 shows the relationship between
total personal income and revenue collections for a group of regions.  Each dot in the
figure represents the amount of revenue collections and the level of personal income
for a number of years.  Just looking at the pattern of the dots, it is obvious that there
exists a positive relationship between the level of revenue collections and the level of
personal income.  In order to quantify this relationship we could, for example, draw
an straight line through the group of dots, and measure the slope and intercept of this
line.  This is in essence what a regression achieves.

In this simple example, the relationship between revenue collections and personal
income can be expressed by the equation:

Tax Revenue = B0 + B1 ? (Personal Income) + errors

The ordinary least squares (OLS) regression procedure will compute the values of the
parameters B0 and B1 (the intercept and slope, respectively) that best “fit” the
observations.  In the given example, the parameters were calculated as B0 = 0.9 and
B1 = 0.6.  



Estimation and Forecasting Methods  4

Obviously, no straight line can exactly run through all of the points.  The
vertical distance between each observation and the line that fits “best” (the regression
line) is referred to as error.  The OLS regression procedure calculates the parameter
values by minimizing the sum of the squared errors for all observations. Hence the
name of the regression method: ordinary least squares.

OLS analysis has many desirable properties; it is the most reliable method of
estimating linear relationships between economic variables.  OLS is quite robust and
can be utilized in a variety of environments, but unlike expert analysis or descriptive
statistics, is not an “intuitive” approach to the data.  OLS regressions do have
limitations; for reasons discussed later, OLS should not be used if it appears that the
data are correlated across time, that is, if the current period’s value is a function of
the value in the previous period.  

When only two variables are included in a regression (one dependent and one
independent variable) this is referred to a bi-variate regression.  Exactly the same
approach can be used when more than one independent variable is used; this is
referred to as a multi-variate regression.  The statistical properties of regression
analysis are theoretically derived in Section 4, while Section 6 describes how to
perform an OLS regression in Microsoft Excel.  The remainder of this section
discusses different forecasting techniques that rely on OLS regressions.

2.4 Forecasting Technique:  Time-Trend Models 

One OLS technique that is discussed in this note is time-trend modeling.
Time-trend modeling attempts to explain the movement in a variable as a function of
time.  The trend variable is merely a counter, increasing by one for each time period
(monthly, quarter, year).  For example, one could imagine that the level of tax
compliance (the degree to which taxpayers comply with the tax laws) is steadily
increasing (or decreasing over time).  Therefore, in this example,

Tax Compliance =  B0 + B1 ? Year.

Time trends can be quite effective in modeling variables that appear to be
steadily increasing or decreasing over time.  For example, later in this note we will
discuss how to model the Consumer Price Index (CPI) with an increasing time- trend
model since it appears that the CPI for the Russian Federation is steadily increasing
over time.  However, using a time-trend model will not provide the analyst with the
same level of accuracy and understanding of the underlying relationships of the
dependent variable with the economy.

2.5 Forecasting Technique: Exponential Smoothing 

Another OLS technique that we will discuss in this note is exponential
smoothing.  Exponential smoothing tries to predict the change in a variable by looking
at how this variable has changed in the past.  In general,
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In essence, the dependent variable is defined as a weighted average of its past values,
where the past values are weighted as a function of a parameter, ? .  The value of ?
is determined by the regression.  Exponential smoothing is quite useful in updating
forecasts generated by other processes but should not be used to generate estimates
for multi-year periods.  However, one could use this technique to update multi-year
forecasts for one additional year that were generated using some other approach.

2.6 Forecasting Technique: Bi- and Multi-Variate Regression
Models 

Certain economic models attempt to examine the relationship between one
variable of interest (the dependent variable) and one or more other variables
(independent variables) using an OLS regression.  A common example is that a
person’s monthly income is expected to be influenced by his or her age, years of
education, years of work experience, geographical factors and gender.  Given a
sufficient amount of data, a multi-variate regression model would be able to compute
the relative influence of all these factors on a person’s monthly income.

We can use the bi-variate models  (a regression model with only one
independent variable) when we wish to investigate a specific relationship between
variables, or when data is simply unavailable for other relevant variables.
Multi-variate models, on the other hand, require more complex data sets but are often
the most powerful models in assisting the analyst in understanding the underlying
relationships between economic variables.  One disadvantage to using regression
analysis is that it is the least intuitive of the methodologies discussed in this note.  It
presents the analyst with many challenges and policy makers are likely to be less
receptive to relying on the regression analysis  approach for policy purposes.  

2.7 Time-Series Analysis and Other Advanced Techniques 

A variety of other, more complex regression techniques are available to
forecast economic and fiscal variables, such as time-series analysis.  These more
complex techniques are not discussed in this note.  In many cases, the data series are
not of sufficient length to support these more advanced forms of statistical analysis.
Second, the data series that are available for the Russian Federation are often subject
to a high degree of volatility, invalidating the use of more sophisticated techniques.
Finally, Microsoft Excel does not support these techniques, thus it would be
impossible to demonstrate these methods without employing another software
package.
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3. Theoretical Review: Descriptive Statistics
The purpose of this section is to review some basic statistical concepts and

methods that are used in the following sections.  As mentioned before, the theoretical
sections are included in this document for completeness and may serve to refresh the
reader’s memory of the basics of statistics.  Readers who are familiar with these
concepts may choose to skip this chapter and continue with Chapter 4 which presents
the theoretical underpinnings of regression analysis, or straight to Chapters 5 and 6,
which discuss the application of the estimation techniques in Microsoft Excel.

The remainder of this section will present a general overview of descriptive
statistics such as measures of central tendency and dispersion; calculating confidence
intervals; and hypothesis testing.

3.1 Descriptive Statistics - General

The primary objective of any statistical analysis is to make statistical
inferences, that is, to draw testable conclusions about a population based upon
information contained in a sample drawn from the population of interest. A
population is any set of items of interest, from the population of taxpayers to the
population of factories producing heavy machinery.  A sample is subset of items
drawn from the population of interest.  Any characteristic of the population is called
a parameter while any characteristic of the sample is denoted as a statistic.  A
statistic is merely an estimate, good or bad, of a population parameter.

Upon drawing a sample from the target population, the data contained in the
sample can be examined using descriptive statistics.  Descriptive statistics, to include
such statistics as the sample mean, sample standard deviation, and sample variance,
are useful in representing the data in recognizable terms.  Statistical inferences are
then made through two types of methods: estimation and hypothesis testing.
Estimation is concerned with calculating the specific value of an unknown population
parameter.  Hypothesis testing is concerned with making a decision about a
hypothesized value of an unknown population parameter.

3.2 Descriptive Statistics - Measures of Central Tendency

A descriptive statistic may be defined as any single statistical measure, derived
from a sample of data, that is designed to illustrate a specific feature of the sample
data set.  The most common types of descriptive statistics are measures of central
tendency and variability.  

We first examine the measures of central tendency as these are necessary to
calculate measures of variability.  Measures of central tendency are used to calculate
the ‘average’ value of a variable in the sample in easily recognizable units.  Several
measures of central tendency are commonly used, to include the sample mean, sample
median, and sample midrange.  In this subsection, we examine how each of these
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(3.1)

(3.2)

measures of central tendency is calculated.

Sample Mean: The sample mean or ‘average’ of a variable X is noted as  and
can be expressed as:

where n is the measure of sample size, X1, X2, ..., Xn are the n independent
observations of X, and ?  denotes summation. For example, if we had a sample of 50
observations on the federal share of Value Added Tax collections on a monthly basis,
then n = 50, X1, X2, ..., Xn would each be equal to one specific month in the sample,
and the sample mean would represent average federal Value Added Tax collections
for the time period covered by the sample.

Sample Median: The sample median or ‘middle’ is equal to the middle ranked
observation of the variable X and is denoted as M.  For example, if we had a list that
ranked all subjects of the Federation by their wealth, the sample would contain 89
observations.  The median observation, M, would be equal to the 45th observation.
If the data sample has an even number of observations, the median would be
calculated by averaging the two middle observations.

Sample Midrange: The sample midrange measures the distance between the
highest and lowest observations for the variable X and is denoted as MR. The sample
midrange can be expressed as:

The reader should note that the sample mean is often preferred to the sample
median or sample midrange since the sample mean utilizes all the observations in the
sample while the sample median only presents information on one observation and the
sample midrange is the average of the difference between the two outlying
observations.

This being said, the sample mean is not always the preferred measure of
central tendency.  Sometimes, the sample mean is subject to the influence of outliers.
Outliers are observations that deviate significantly from the common pool of
observations.  In the event that a variable contains widely dispersed values, the other
measures of central tendency (especially the median) may convey more pertinent
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(3.3)

(3.4)

information than the sample mean.  In the next section, we discuss measures of
variability that the reader can use to determine what measure of central tendency best
represents the sample data in question.

3.3 Descriptive Statistics - Measures of Variability

As just discussed, measures of central tendency are used as a measure of the
“average” level of a variable.  Measures of variability are used to determine how
“spread out” the observations are around that “average.”  As more observations
deviate from the common pool of observations, the dispersion or variance of the
variable in question increases. In this subsection, we will examine two common
measures of variability, the sample variance and sample standard deviation.

Sample Variance: The sample variance, Sx
2 , measures the variability of a

variable X in terms of the average of the squared deviations of the sample
observations from the sample mean.  The sample variance can be expressed as:

where n is the number of observations in the sample; X1, X2, ..., Xn are the
independent observations for the variable X; and  is the sample mean.

One problem with the sample variance is that it is expressed in squared units
of the sample variable.  To eliminate this problem so as to have a measure of the
variability expressed in the same units as the variable of interest, we can use the
sample standard deviation.

Sample Standard Deviation: The sample standard deviation, Sx , is the square
root of the average of squared deviations of the sample observations from the sample
mean.  Simply put, the sample standard deviation is the square root of the sample
variance or:

As before, n is the number of observations in the sample; X1, X2, ..., Xn are the
independent observations for the variable X; and  is the sample mean.

Coupled with the measures of central tendency, the measures of variability



Estimation and Forecasting Methods  9

Confidence Intervals

When developing a confidence interval, note that:
? Parameter ?  is a fixed and unknown constant, based on the full population;
? The lower and upper limits of the confidence interval are random quantities; so
? The boundaries of the confidence interval vary from sample to sample.

provide us with an assessment of the average value and dispersion of the variable of
interest.  However, calculating these measures by hand can prove quite tedious,
especially in large samples.  As illustrated in Section 5, we can use Microsoft Excel
to circumvent this manual calculation process and also to reduce the probability of
human error that arises when calculations are done by hand.

3.4 Estimating Confidence Intervals

In the previous two subsections, we defined the sample mean and sample
variance, among others.  The process of developing specific estimates for a unknown
population parameter of interest is called estimation and the specific estimates are
called point-estimates.  Our line of inquiry now focuses on the probability that our
point-estimates lie within a range of values that are likely to contain the true value of
the population parameter.  Simply put, we want to know whether our point-estimate
is a reasonable estimate of the population parameter.

In general, to estimate a parameter of interest, the standard procedure is to
draw a random sample of observations from the population of interest, develop the
point-estimate for the population parameter, and then calculate a confidence interval
for the population parameter.  A confidence interval is a range of values within which
we have a predetermined level of confidence that the value of the population
parameter lies within the range covered by the confidence interval.

More technically, for any population parameter ? , we can develop a random
variable  , where  is the point-estimate of the population parameter ? . We utilize
the ‘̂ ’ sign to differentiate between the point-estimate and the population parameter.
The size of the confidence interval for the point-estimate is dependent upon what level
of confidence with which we wish to be certain.  For example, we could set the lower
and upper limits of the confidence interval in a manner so that we know with 90
percent confidence that ?  falls inside the confidence interval.  This means that if we
were to take repeated random samples of similar size from the same population, 90
percent of such intervals would statistically be expected to contain the parameter ? .

To calculate a confidence interval, three variables must be known.  First, what
is the level of confidence?  Second, what is the point-estimate of the parameter?
Third, what is the estimated standard error of the point estimate?  
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(3.5)

(3.6)

First, the desired level of confidence needs to be determined.  The higher the
level of confidence, the more likely that the confidence interval will contain ? .
However, a trade-off exists, in that choosing a higher level of confidence will increase
the distance between the boundaries of the confidence interval.  For any given level
of confidence, let ?  = (1-Level of Confidence), where ?  is the significance level of the
confidence interval.

Second, determine the point-estimate ( ) of the parameter.  As discussed
previously, the point-estimate is a specific value calculated using a formula and a
random sample of data drawn from the population of interest.  A point-estimate may
be an estimate of the population mean, population variance, population median, or a
variety of other descriptive statistics.

Third, what is the estimated standard error the point-estimate?  Slightly
different than the sample standard error, the estimated standard error for a point-
estimate can be expressed as:

where SX is the sample standard deviation of the variable X, n is the number of
observations in the random sample, and  is the sample mean of X. 

For any point-estimate , the boundaries of the confidence interval are
defined as:

where t represents the t distribution with n - 1 degrees or freedom at ?  significance
level. The respective values of the t distribution are contained in many standard
statistical books or can be computed using Microsoft Excel.

3.5 Hypothesis Testing for the Mean, Median, and Midrange

In the previous section, we discussed how to estimate  a confidence interval
for the point-estimator of a population parameter.  Given an estimated confidence
interval, we can determine whether or not the point-estimator is ‘reasonable’ estimate
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(3.7)

of the population parameter.  For example, if we developed a confidence interval for
an estimate for the sample mean, we would be able to determine whether the sample
mean was within the plausible range of values for the population mean.

  However, the range of plausible values may be relatively large if one wishes
to make inferences about a specific value.  If we wished to test whether the
population parameter was equal to X1 instead of X2, where both X1 and X2 were
within the confidence interval for the population parameter; we would not be able to
conduct this test using the confidence interval approach. 

We can, however, use hypothesis testing to test whether the estimated value
of a parameter of interest varies significantly from the hypothesized value.  Simply
put, we can use hypothesis testing to conclude whether or not the population
parameter is equal to X1 instead of X2.

As with the estimation of a confidence interval, we must first answer a series
of question in order to test a hypothesis.  First, what are the null and alternative
hypotheses?  Second, what is the significance level of the hypothesis test?  Third,
what test statistic will be used to test the null hypothesis?  Fourth, what is the critical
value of the test statistic?  From these questions, we can compute the value of the test
statistic and determine whether or not to reject the null hypothesis.

Null and Alternative Hypotheses: In general, hypothesis testing  involves the
statement of a rule, expressed in terms of the data, that dictates whether or not the
null hypothesis should be rejected or not.  Traditionally, the null hypothesis (Ho) is the
statement that we wish to examine and the alternative hypothesis (Ha) is the
conclusion that we will draw if we reject the null hypothesis.  Let us assume that we
wish to test whether the population mean income is equal to $54,000.  Our null and
alternative hypotheses would then be: 

Significance Level of a Hypothesis Test: Ideally, we would like to eliminate
the possibility of incorrectly rejecting the null hypothesis when it is true.  However,
a tradeoff exists in that as we decrease the likelihood of incorrectly rejecting the null
hypothesis, we increase the probability that we will fail to reject the null hypothesis
when it is false.  Thus, the best possible course of action is that for a given probability
of rejecting the null hypothesis when it is true (? ), the testing procedure used has the
smallest probability of failing to reject the null hypothesis when it is false (? ).  We
denote ?  as the size of the test and ?  is also known the significance level of the test.
The power of the test is expressed as (1 - ? ).  

In our current example, we wish to test whether mean population income is
equal to $54,000.  As previously discussed with respect to developing a confidence
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(3.8)

(3.9)

interval, we wish to have a predetermined level in confidence in the test.  For this
example, we will test the null hypothesis at a 90% level of confidence or 10%
significance level. 

The Test Statistic: Recall that the general form of the confidence interval is:

and that the range of plausible values for the population parameter of interest is given
by Equation 3.8.  We can easily manipulate Equation 3.8 to construct the following
test statistic:

where  is the point estimator of ? ; SX  is the estimated standard deviation;  and n the
number of observations in the sample.  As with the construction of the confidence
interval for the sample mean, the T-statistic is distributed with (n-1) and (1-? /2)
degrees of freedom. 

Using the point-estimate for the population parameter of interest, we will be
able to test the null hypothesis.  If the calculated T-statistic in Equation 3.9 is less than
the critical T-statistic, then we “fail to reject” the null hypothesis.  Failing to reject the
null hypothesis leads one to conclude, based upon the sample information, that it is
likely that the population parameter is equal to the hypothesized value in the null
hypothesis.  If the calculated T-statistic in Equation 3.9 is greater than the critical T-
statistic, we would then “reject” the null hypothesis, and we would conclude, based
on the sample information, that the population parameter is not equal to the value
contained in the null hypothesis.
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(4.1)

4. Theoretical Review: Regression Analysis
4.1 Introduction

As discussed in Section 2, linear regression models are used to study the
relationship between a dependent variable and a set of independent variables.
Multi-variate regression analysis attempts to explain variations in the dependent
variable y through movements in the k explanatory (independent) variables x1, x2, ...,
xk.  The general form of the multi-variate linear regression model is:

The model incorporates the randomness that is prevalent in the real-world, hence y
is dependent not only on x1, x2, ..., xk  but also on the stochastic element ? , hence y
is a function of x and ?  or y = f(x,? ).  

The remainder of this chapter will discuss the assumptions of the multi-variate
model, the derivation of the model’s estimators, and a measure of the model’s “fit.”.
Since a time trend model is simply a regression model that uses a measure of time as
its only independent variable, this approach requires little further theoretical
explanation.  Exponential smoothing is discussed in greater detail in subsection 4.5.
Instructions on how to estimate regressions with Microsoft Excel are discussed in
Section 6.

4.2 Assumptions of the Multi-Variate Model

The purpose of this section is to briefly review the underlying assumptions of
the classical linear regression model.  In general, these assumptions address the
following issues:

1. Linear functional form;

2. Identifyability of the model parameters;

3. Expected value of the disturbance given observed information;

4. Variances and covariances of the disturbances give observed
information;

5. Nature of the sample data with respect to the independent variables,
and;
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(4.2)

6. Probability distribution of the stochastic part of the model.

The purpose of these assumptions is to describe the form of the multi-variate linear
regression model and the relationships among its components.  Furthermore, these
assumptions dictate the appropriate estimation and inference procedures and are
therefore critical to the model.

Linear Functional Form: In the context of the multi-variate linear regression
model, the assumption of linearity refers to the manner in which the regression
parameters (? ’s) and the disturbance term (? ) enter the regression equation.  In
general, the assumption of linearity means that the function y = f(x1, x2, ..., xk) has to
be expressed as a linear equation, or transformable into a linear equation.  However,
by transforming the independent variables, one can estimate non-linear functions.  For
example, the equations:

y = ? 0 + ? 1 x1 + ?   

y = ? 0 + ? 1 log(x1) + ?

y = ? 0 + ? 1 x1 + ? 2 x1
2 + ?

y = e? 0 x1
? 1 x2

? 2    (equivalent to log(y) = ? 0 + ? 1 log(x1) +? 2 log(x2) + ? )

are all linear in some function of  x and meet the linearity assumption. More formally,
the linearity of the regression model assumption is stated as:

where y is a T x 1 vector containing the independent variable, X is a T  x k matrix of
independent variables and ?  is the k x 1 vector of parameters; ?  is an T x 1 vector of
the stochastic error.

Identifyability of the model parameters: The second assumption is that no
exact linear relationship exists among the variables in the model;  the columns of the
matrix X are linearly independent.  This means that none of the independent variables
in X are equal to a linear combination of one or more of the other independent
variables in X. More formally, X is a n x k matrix with rank k.

Expected value of the disturbance given observed information: Given the
matrix of independent variables X, we further assume that the disturbance term ?  has
an expected value of zero at every observation. In principle, the mean of each
disturbance term ? i conditioned on all observations xi is zero, that is, no observations
in X convey information about the expected value of the disturbance term.  This
implies that the disturbance terms are ‘white noise’ or purely random draws from
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(4.3)

(4.4)

(4.5)

some population of disturbance terms.  This assumption can be formally expressed as:

Variances and covariances of the disturbances give observed information: The
fourth assumption concerns the variances and covariances of the disturbance terms:

We assume that the data has constant variance or is homoscedastic and displays no
autocorelation. Note that these assumptions pertain to the variances and covariances
conditional upon the independent variables.  These assumptions, which are relaxed in
more refined models, imply that (1) the variation in the disturbance terms is constant,
and (2) disturbances are truly independent, that is, a preceding or succeeding
disturbance has no influence on another disturbance term.

Nature of the sample data with respect to the independent variables: We
further assume that the independent variables in the observed sample are non-
stochastic, that is, the explanatory variables are a known series of constants.  This
assumption, which is equivalent to stating that the explanatory variables are fixed in
repeated samples, allows us to disregard the sources of variation in the explanatory
variables and focus on the relationship between y and X.

 Probability distribution of the stochastic part of the model: The final
assumption of the classical linear regression model is that the disturbances are
normally distributed with zero mean and constant variance.  This adds the assumption
of normality to the assumptions about the mean, variance, and covariance of the
disturbance terms conditional on the matrix of explanatory variables.

4.3 Deriving the Estimator

As previously discussed, the objective of the least squares method is to
minimize the sum of the squared errors, that is, to minimize the sum of the distances
between the observed and predicted values of y.  This objective function can be
written as:
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(4.6)

(4.7)

(4.8)

(4.9)

where e is a T x 1 vector of residuals, and e’ is the transpose of e.  Thus, e’e results
is a scalar result, that is, the sum of squared errors.

To minimize (4.6), we must first obtain the first order conditions.  We
differentiate (4.6) with respect to ?  and setting the resulting expression equal to 0
results in:

We can proceed to solve (4.7) by dividing through by 2 and multiplying through by
the transpose of the X matrix (X’):

In order to solve (4.8) for ? , we must multiply both sides by the inverse of X’X,
which results in the least squares estimator:

Statistical Properties of the Estimator: We can now examine the properties of
the least squares estimator under the standard set of assumptions.  We are concerned
about the least squares estimator’s properties in that the estimator measures the true
population parameter and we wish to discern how accurately this measurement
occurs.  Note that in order to examine the properties of the least squares estimator,
we must assume that the linear model is, in itself, the correct model to estimate the
population parameters.  

We can use the following four measures to evaluate the statistical properties
of the least squares estimator:

1. Unbiasedness
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(4.10)

2. Consistency

3. Variance

4. Mean Square Error

Unbiasedness: An estimator is unbiased if its expected value is equal to the
population parameter, that is,  is unbiased if  .  On average, an
unbiased estimator will be equal to the true value of the population parameter.

Consistency: An estimator is consistent if the estimator converges in
probability to the population parameter.  In essence, as we increase the sample size
to infinity, the probability that the estimator deviates from the true population
parameter approaches zero.

Variance: As the variance of an unbiased estimator declines, the precision of
the estimator increases.  Intuitively, if we have two unbiased estimators, the estimator
with the smaller variance is the more accurate estimator.

Mean Square Error: Mean square error is equal to the variance of an
estimator plus the square of its bias or:

As with the variance measure, as the Mean Square Error of an estimator declines, the
precision of the estimator increases.  Thus, it is possible for an unbiased estimator
with a relatively large variance to be less precise than a biased estimator with a
relatively small variance and bias.

Thus, coupled with the assumptions of subsection (4.2) and the assumption
that the columns of the X matrix are linearly independent, we know:

1. The model is well-defined.

2. On average, the omitted variables, sampling error, and other forms of error
have no impact on the dependent variable.

3. The least squares estimator is consistent.

4. If the columns of X are independent of the error terms, then the least squares
estimator is also unbiased.

5. The variance of the least squares estimator is .
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(4.11)

(4.12)

(4.13)

(4.14)

These assumptions and results are sufficient to show that, within the class of linear,
unbiased estimators for ? , the least squares estimator has minimum variance, and is
thus the most precise estimator for ? .  

4.4 Determining the “Fit” of a Model and Parameters 

Several measures exist to determine how well a model ‘fits’ the observed data.
We could run several models and compare the Residual Sum of Squares and choose
the model that minimizes the Residual Sum of Squares.  However, it can be shown
that the Residual Sum of Squares can be scaled arbitrarily just by multiplying the
values of y by the desired scaled factor.  Another measure that may be used is the
coefficient of determination or R2.

To calculate R2 , we must first determine how well a specific model ‘captures’
the variation in the dependent variable.  Let the Total Sum of Squares be equal to:

that is, the total variation in y is defined as the sum of the squared deviations of y
from its mean.  The Total Sum of Squares is also equal to the Regression Sum of
Squares (SSR) plus the Residual Sum of Squares (SSE).

Proceeding from the definition of the Total Sum of Squares, we can define the
Residual Sum of Squares as:

and the Regression Sum of Squares as:

A regression will “fit” well if the deviations of y from its mean are more
largely explained by deviations of x from its mean than by the residuals.  R2 is a
measure that captures this concept and is equal to:

The coefficient of determination (R2) will vary between zero, in which case the
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(4.15)

(4.16)

independent variables have no explanatory power whatsoever, and unity, in which
case the independent variables explain all variation in the dependent variable.  

An other important measure how well the regression is performing is whether
each parameter has a statistically significant influence on the dependent variable.  We
can use Equation 3.6 from Section 3 to develop test statistics for the estimated
intercept and slope coefficients.  To test the null hypothesis whether an estimated
regression coefficient is independently equal to zero, we can use the following
equations:

Note that for a two-tailed test where the null hypothesis is that the estimated
coefficient is equal to zero, the calculated T-statistic is equal to the estimated
regression coefficient divided by its sample standard error. 

4.5 Exponential Smoothing

Exponential smoothing is used for continually updating a forecast to account
for recent changes in the data series of interest.  Exponential smoothing applies to
data series without time-trends and to series with both linear and nonlinear time-
trends.  This method of forecasting is primarily used to update or revise forecasts
generated by other processes and is best used for updating forecasts for one period
ahead.  The caveat is that exponential smoothing should not be used for long-term
forecasts.

Exponential smoothing is most powerful when the data series has been subject
to large, unexpected shocks or innovations.  The reader should be aware that even a
series governed by a strong linear time-trend may be subject to wide variations around
the time-trend.  While a linear time-trend model may depict the general, long-term
movement of the data series of interest, point forecasts based on the linear model may,
in fact, miss the unexpected fluctuations in the series.  An updated forecast generated
through the use of exponential smoothing may provide more accurate short-term
forecasts.

With exponential smoothing, the revised estimate for the next forecast period
is simply the sum of the estimate for the current period and a portion of the forecast
error in the current period or:
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(4.17)

where ?  is the weight given by the exponential smoothing function to the forecast
error.  Sensible values for ?  range from 0 to 1, although ?  can vary outside this
range.  We can rewrite Equation 4.16 so that the updated forecast is the weighted
sum of all past values of the series with the weights equal to powers of the ?
parameter or:  

Consider the impact of a large ? .  A large ?  will result in more recent observations
having more influence on the new forecast relative to older observations.  Thus,
forecasts developed using large values of ?  will respond more quickly to changes in
the data series than forecasts developed with a small ? . The tradeoff is that forecasts
developed with large ?  values will be subject to the influence of large shocks or
innovations in the data series.  However, in most cases, it is not necessary to estimate
the ?  value in that the best choice for ?  is the value that minimizes the sum of squared
prediction errors.
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5. Statistical Procedures in Microsoft Excel
5.1 Introduction

The User Manual for the Multi-Year Budget Model for the Russian
Federation contains a section with general directions for the use of Microsoft Excel.
This section complements and builds on the general instructions contained in the User
Manual.  Readers who are familiar with Microsoft Excel and the use of basic
statistical operators may choose at move to the next section at their discretion.

Accompanying this note is a floppy disk containing this note and a Microsoft
Excel data file. We will use the Microsoft Excel data file throughout this note to
illustrate how to calculate various functions and to estimate relationships between
variables of interest.  Our first step is to open this data file.  At this point, start the
Microsoft Excel program.

Opening a Workbook: To open the data file on the floppy disk, you must use
the OPEN command.  Look at the top of Microsoft Excel program for a list of
commands, to include File, Edit, View, Insert, Format, among others.  Taking the
mouse, point at the File command and click on File.  When the File menu opens, look
for the Open command and point and click on the Open command.  A rectangular
window will appear and at the top of the window is a small box with Look In to the
left of the small box and a arrow to the right of the small box.  Click on the small
arrow to see a list of drives available to you at this period in time.  Look for and click
on the ‘A’ or floppy drive.  When the ‘A’ drive opens in the rectangular window, look
for the file called Examples.  Click on this file and then click on Open so that
Microsoft Excel will open the appropriate file.  Figure 5.1 illustrates the Example
data file open in Microsoft Excel.

Workbooks and Worksheets: Note that in Figure 5.1 and in the open data file
in Microsoft Excel that there are a series of tabs starting in the bottom left hand
corner of the data file.  In Microsoft Excel, the entire data file is called a Workbook.
A workbook consists of several individual Worksheets which contain data, charts,
and other items of interest.  To move from one worksheet to another, simply click on
the tab of the worksheet that you wish to move to and this worksheet will appear.
The active worksheet is highlighted in white as illustrated in Figure 5.1.

Worksheet Organization: Each worksheet consists of a spreadsheet of rows
and columns which resembles a chessboard.  As illustrated in Figure 5.1, each row is
numbered and each column is represented by a letter.  A specific cell is defined by its
location in the spreadsheet, so in this example, cell B2 contains the number 4210.40.

Entering and Deleting Data: To enter data in Microsoft Excel, the reader
merely has to select the cell into which the data is to be entered.  Selecting a specific
cell is done by pointing the mouse arrow at the cell and then clicking on the specific
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cell of interest.  Once the cell is highlighted (see cell C11 in Figure 5.1), type in the
data and press ENTER.  The data is now a part of the worksheet.  To delete a specific
data cell, click on the cell containing the data you wish to delete and press the
DELETE button.

Now that we have covered the basic operations of opening an Excel
Workbook, finding and selecting a Worksheet, and Entering and Deleting Data, we
turn to calculating the measures of central tendency and variability using Microsoft
Excel.

Figure 5.1

Illustration of Open Excel Workbook

5.2 Calculating Measures of Central Tendency

In this subsection, we will examine how to calculate the measures of central
tendency and variability using Microsoft Excel.  In many cases, Microsoft Excel has
“built-in” functions that we will be able to use to calculate the statistics of interest; in
other circumstances, we will have  to calculate these statistics without relying on the
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existing functions in Microsoft Excel.  For the remainder of this section, please refer
to the Measures worksheet of the Examples data file.

The first task of this subsection is to calculate the measures of central
tendency, to include the sample mean, sample median, and sample midrange.  The
Measures worksheet already contains the necessary data.  36 observations on the
federal share of the Value Added Tax collections (in millions or Rubles) from January
1995 to December 1997 are contained in the Measures worksheet.

Note that the first data cell containing observations for Value Added Tax
collections is cell B2 and that the data is separated into columns, where each column
contains observations for one year.  Thus, the observations are in cells B2 to B13, C2
to C13 and D2 to D13 for 1995, 1996, and 1997, respectively. 

Calculating the Sample Mean: We can use the average function in Microsoft
Excel to calculate the sample mean for a variable of interest.  The general form of the
average function is:

=average(range of cells)

The range of cells should refer to those cells that contain the observations for which
we wish to calculate the sample mean.  A range of cells is specified by typing the cell
reference of the top-left corner cell of the range, followed by a colon, followed by the
cell reference of the bottom-right corner cell of the range. Note that Microsoft Excel
will not discern between two different variables, so caution must be exercised to
correctly input the range of cells.

Let us first calculate the sample mean for the observations for 1995.  As
previously discussed, the observations for 1995 are contained in cells B2 to B13.  To
calculate the sample mean for 1995, we merely have to type the following formula
into a blank cell and press ENTER:

=average(b2:b13)

If the sample mean for 1995 is calculated correctly, Microsoft Excel should
return a value of 5,891.99.  Since our data is denominated in millions of Rubles, we
can state that average federal share of Value Added Tax collections for 1995 was
5,891.99 million Rubles.  In the Measures worksheet, we have output this result to
cell B15.

The reader should note that we have added a “=” sign to the average function.
The “=” sign is an indicator that the text following the “=” sign is a function and not
merely plain text.  If we omit the “=” sign and press ENTER, we would observe that
what we had typed appears in the cell instead of the desired descriptive statistic.  All
functions in Excel must be entered with a “=” sign.



Estimation and Forecasting Methods  24

How does this value compare to the sample mean for the entire sample of
observations from 1995 to 1997?  In order to calculate average Value Added Tax
collections (Federal Share) from 1995 to 1997, we can modify the average formula
to state:

=average(b2:d13)

which is entered to cell F15; Microsoft Excel should return of 8044.33.  It does
appear that average Value Added Tax collections (Federal Share) increased over time.

Calculating the Sample Median and Midrange: We can use the median
function in Microsoft Excel to calculate the median observation for a range of values.
Microsoft Excel will return the median value if there are a odd number of
observations in the range of cells for which Microsoft Excel is to calculate the median
value.  If there are an even number of observations in the range of cells, Microsoft
Excel will calculate the average of the two median observations instead of returning
the values for the two median observations.

The general form of the median function is similar to the average function
and is expressed as:

=median(range of cells)

or, for example,

=median(b2:b13)

returns the median value for monthly VAT collections for the year 1995, which equals
5145.65. 

Calculating the sample midrange proves slightly more difficult, since Microsoft
Excel does not have a built-in function for the calculation of the sample midrange.
Note that computation of the sample midrange requires two values, the minimum and
maximum observations for the variable of interest.  Microsoft Excel does have two
functions, Min and Max, that we can use to obtain the minimum and maximum
observations for the Value Added Tax collections (Federal Share) series.  Similar the
average and median, the general form of the Min and Max functions are:

=min(range of cells)

=max(range of cells)

Recall that the sample midrange is merely the maximum observation minus the
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minimum observation divided by two.  Using 1995 as an example, we can calculate
the sample midrange by typing:

=((max(b2:b13)-min(b2:b13))/2)

5.3 Calculating Measures of Variability

We now turn to the calculation of the measures of variability that were
previously discussed in Section 2.3.  Please continue to use the Measures worksheet
in the Examples data file.  The general form of the sample variance function and the
sample standard deviation function are similar to that for the functions for the sample
mean and sample median in that the general form is:

=var(range of cells)

and 

=stdev(range of cells)

Continuing with our example of calculating the descriptive statistics for 1995 and the
entire sample of observations, we can calculate the sample variance and sample
standard deviation for 1995 by typing:

=var(b2:b13)

and

=stdev(b2:b13)

If the formulas were correctly entered, cells B18 and B19 should return the value of
5,227,486.78 for 1995 and 2,286.37, respectively.  The sample variance and sample
standard deviation for all observations are calculated in cells F18 and F19.

5.4 Calculating Confidence Intervals

In this subsection, we examine how to calculate confidence intervals for point-
estimates using Microsoft Excel.  The reader should now open the Examples data file
that accompanied this note and go to the Confidence worksheet in the Examples file.

Introduction and Assumptions:  The Confidence worksheet contains two
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hypothetical samples that we will use to develop confidence intervals for several
point-estimates of interest.  Let us assume that each of the hypothetical samples are
drawn from a population of 5,000 individuals and that the samples are drawn at
random. The sample size is set at 100 individuals and we observe gross income for
each individual in the sample.  Due to time and resource constraints, we are unable
to sample the entire population.  For convenience, the data samples have been
highlighted in red.

We are able, however, to draw inferences about the entire population from the
observed samples.  We can calculate descriptive statistics and develop confidence
intervals for those statistics so that we know how confident we can be about their
accuracy.  In this fashion, we are able to make inferences about the population at large
based upon a relatively small sample of observations.

Using our previous discussions on the measures of central tendency and
variability, we can calculate the sample mean, sample median, sample midrange,
sample variance and sample variance using Microsoft Excel.  The results are presented
in Table 5.1 and are also contained in cells D3 through D8 of the Confidence
worksheet.

Table 5.1

Descriptive Statistics for Sample 1 in the Confidence Worksheet

Point-Estimator Point-Estimate

Sample Mean $50,928

Sample Median $52,996

Sample Midrange $48,523

Sample Variance 877,471,499

Sample Standard Deviation $29,622

n 100

The reader should note that instead of counting the number of observations
by hand, we have used the Count function in Microsoft Excel to confirm there are
actually 100 observations in Sample 1.  The general form of the Count function is:

=count(range of cells)

The Count function will return the number of non-blank, numerical cells only.  Thus
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it will not include cells that include text or invalid arguments in the numerical count.
In order to determine the number of observations in Sample 1, we typed:

=count(b3:b102)

Recall that we previously stipulated that the sample standard deviation was equal to
the square root of the sample variance.  To illustrate this fact, we calculate the square
root of the sample variance in cell D10 by using the SQRT function or:

=sqrt(D8)

Calculating the Confidence Interval for the Sample Mean: Recall from
Equation 2.6 that in order to calculate a confidence interval, we must first determine
the following four values:

? The Level of Confidence;

? The Estimated Standard Error for the Point-Estimate;

? The Square Root of the Number of Observations in the Sample;

? The T-Statistic at n-1 and 1-? /2 degrees of freedom.

Let us assume that we wish to calculate a confidence interval for the sample
mean at a 95% level of confidence.  Recall that ? , which is the level of significance,
is equal to (1- level of confidence), so ?  is equal to 5%.

The estimated standard error for the sample mean, as defined in Equation 3.5,
is equal to the estimated sample standard deviation (Equation 3.4) divided by the
square root of the number of observations in the sample.  As illustrated in the
Confidence worksheet, the sample standard deviation is equal to $29,622 (Cell D7)
and the square root of the number of observations in the sample is equal to 10 (Cell
D10).  Thus, the estimated sample standard error is equal to $2,962, which is the
result in Cell D11 and is also illustrated in Table 5.2.
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Table 5.2

Calculating the Confidence Interval for the Sample Mean

Point-Estimator Point-Estimate

Sample Mean $50,928

Estimated Standard Error $2,962

Critical T-Statistic 1.984

Upper Bound for the Sample Mean $45,050

Lower Bound for the Sample Mean $56,805

n, n-1, ? 100, 99, 0.95

Recall from Equation 3.6 that the upper and lower bounds of the confidence
interval are equal to the point estimate plus/minus the critical t-statistic multiplied by
the estimated sample standard error.  We now need to determine the value of the
critical t-statistic in order to calculate the upper and lower boundary points.  As
illustrated in Equation 3.6, the t-statistic is distributed with n-1 degrees of freedom
and 1-(? /2) level of confidence.

The TINV Function: We can use the Tinv function in Microsoft Excel to
calculate the critical t-statistic.  The general form of the Tinv function is:

=TINV(level of significance, degrees of freedom)

Note that instead of entering 1-(? /2) as the operator of the t distribution, we only
have to enter ?  in the Tinv function; by default, Microsoft Excel calculates the correct
(two-tailed) t-statistic.

Given that we know that ?  =0.5 (cell D13), and n-1 = 99 (cell D15), we can
calculate the critical T-statistic using either two of the following examples:

=TINV(d13,d15)

The result of this calculation is contained in cell D15 and the critical T-statistic is
equal to 1.984.

Calculating the upper and lower bounds of the confidence interval for the
sample mean is illustrating in cells D17 and D18 and the results are contained in Table
2.  For example, the upper bound of the confidence interval is equal to:

=(D3 + (D11*D15))



Estimation and Forecasting Methods  29

or

$50,928 + (1.984*$2,962) = $56,805

We can now conclude that the sample mean of $50,928 is a reasonable
estimate for the population mean and that in repeated samples, the population mean
is likely to lie within the range between $45,050 and $ 56,805 with a level of
confidence of  95 percent.   Sample 2 in the Confidence worksheet presents one more
example of how to calculate a confidence interval for the sample mean. 

5.5 Conducting Hypothesis Tests in Microsoft Excel

In the previous subsection, we developed estimates for a range of statistically
possible values for the sample mean.  However, as evidenced by Sample 1 in the
Confidence worksheet, the confidence interval (the range of values that are plausible)
can be relatively large if one wishes to make inferences about a specific value.  In the
previous example, if we stated the hypothesis that the population mean was equal to
$54,000 rather than the estimated value of $50,928, we would be unable to discern
whether or not this hypothesis was indeed true using the confidence interval approach.

We can, however, specify a hypothesis test to determine whether the estimated
value of a parameter of interest varies significantly from the hypothesized value.
Simply put, we can use a hypothesis test to conclude whether or not the population
sample mean is indeed equal to $54,000.  For this section, please refer to the
Hypothesis worksheet of the Examples data file.

Recall that as with the estimation of a confidence interval, we must first
answer a series of question in order to test a hypothesis.  First, what are the null and
alternative hypotheses?  Second, what is the significance level of the hypothesis test?
Third, what test statistic will be used to test the null hypothesis?  Fourth, what is the
critical value of the test statistic?  From these questions, we can compute the value
of the test statistic and determine whether or not to reject the null hypothesis.

Null and Alternative Hypotheses: Given that we wish to test whether the
population mean is actually equal to $54,000, the null and alternative hypotheses are:

Significance Level of a Hypothesis Test:  In our current example, we wish to
test whether mean population income is equal to $54,000.  As previously discussed
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with respect to developing a confidence interval, we wish to have a predetermined
level in confidence in the test.  For this example, we will test the null hypothesis at a
90% level of confidence or 10% significance level. 

The Test Statistic: As with the estimation of a confidence interval for the
sample mean, we can use the T-statistic to test the hypothesis of whether mean
population income is equal to $54,000.  If the calculated T-statistic is larger than the
critical T-statistic, then we reject the null hypothesis and conclude that mean
population income is unlikely to be equal to $54,000.  On the other hand, if the
calculated T-statistic does not exceed the critical T-statistic, then we fail to reject the
null hypothesis, and thus we can conclude that, based on the sample information, that
mean population income is indeed equal to $54,000.

  Critical Value of the Test Statistic: As discussed earlier in this section, the
critical value of the test statistic is determined by the number of observations in the
sample (n) and the significance level of the test (? ).  Given that n=100 and (? )=.10,
the t-statistic can be calculated using the following function:

=tinv(.10, 99)

which is equal to 1.66.  If the calculated test statistic exceeds 1.66, then it falls within
the rejection area of the test and we may reject the null hypothesis at a 10% level of
significance.  This means that, in repeated samples, that we are likely to reject the null
hypothesis 90% of the time.  Likewise, if the test statistic does not exceed 1.66, then
we fail to reject the null hypothesis and it is possible that mean population income is
equal to $54,000.

Calculating the Test Statistic for the Sample Mean: As illustrated in cells D22-
D31 of the Hypothesis worksheet and in Table 5.3, we have calculated the critical T-
statistic for the null hypothesis that mean population income is equal to $54,000 using
the expression in Equation (3.9):

Note that in the Hypothesis worksheet we have calculated the values for the sample
mean, the sample standard error, and the number of observations using functions
previously discussed.  We then referred to these results in the calculation of the T-
statistic.  The following expressions was used in Microsoft Excel for the calculation
of the critical T-statistic:

=abs((D3-D4)/D9)
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where the abs function produces the absolute value of term inside the inside the
parentheses.

Interpreting the Result: As illustrated in Table 5.3, the calculated value for the
T-statistic (1.037) does not exceed the critical T-statistic of 1.66.  We thus “fail to
reject” the null hypothesis that mean population income is equal to $54,000 and
conclude that mean population income is likely to be equal to $54,000.  Note that we
can never conclude with certainty that the population’s mean income is equal to
$54,000 because we do not observe the entire population and only may draw
inferences about mean population income (or some other population parameter).

Table 5.3

Hypothesis Testing

Point-Estimator Point-Estimate

Sample Mean $50,928

Hypothesized Population Mean $54,000

Estimated Standard Error 2,962

Critical T-Statistic 1.66

Calculated T-Statistic 1.04

n, n-1, ? 100, 99, 10%

5.6 Using the Data Analysis Tool to Produce Summary
Statistics

Before proceeding to the next chapter, it will be useful to cover one more tool
in Microsoft Excel, the Data Analysis Tool (DAT).  The Data Analysis tool comes
with the Excel program, but is not installed as a standard component.  Therefore if the
Data Analysis tool appears to be missing from your version of Excel, you would have
to install this component before you can use the procedures int this subsection.  It
should be pointed out that all the functions that the Data Analysis tool performs can
be produced without installing the Data Analysis tool. 

The Data Analysis Tool (DAT) automates many statistical functions in
Microsoft Excel and, for simple statistical analysis, is more efficient than entering the
statistical functions by hand.  A note of caution, however, in that the DAT does not
automate every function, so the DAT should be used to support statistical analysis
and not replace the analyst’s role in determining what are those appropriate statistics
of interest.  Please refer to the DAT-STAT worksheet in the Examples data file for
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the remainder of this subsection. 

Figure 5.2

Selection of Analysis Tools in the Data Analysis Tool Window

Figure 5.3

Calculating Summary Statistics Using the Data Analysis Tool

Operating the Data Analysis Tool: The DAT is quite simple to operate.  Go
to Tools and then click on Data Analysis.  The Data Analysis tool will open as
illustrated in Figure 5.2.  
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Note that there are a variety of statistical functions that we may use with the
Data Analysis tool. Click on Descriptive Statistics so that is highlighted as in Figure
5.2 and click on OK.  The Descriptive Statistics function window will open as
illustrated in Figure 5.3.

Input Range: The first ‘box’ in the Descriptive Statistics function window is
labeled Input Range.  In this ‘box’ we will enter the range of data for which the
descriptive statistics will be produced.  Note that in the DAT-STAT spreadsheet the
data range is B2:B102 and the first data cell (B2) contains the label for the data series
on income. 

There are two methods of entering the range of data.  First, we can enter the
range B2:B102 in the Input Range box.  Second, note that at the right hand edge of
the box is a small rectangle with an upward pointing arrow.  If we click on this small
box, another entry box will appear.  We can now simply highlight the cells containing
our data and then click on the small box with the downward pointing arrow to return
to the Data Analysis tool.

Grouped By:  The Grouped By consists of two inputs, whether the data is
oriented by columns or by rows.  The data in the DAT-STAT worksheet is column
oriented, that is, the observations for one series are in one column. As illustrated in
Figure 5.3, we select Columns since our data is oriented by column. If the
observations for one series were contained in one row, then we would select Rows
instead of Columns.

Labels in First Row: If the first row (or cell) of the data series is a label, then
make sure that this box is checked else the DAT function will return an error message.
Since cell B2 contains the label ‘Income’, we have checked the cell in the example
illustrated in Figure 5.3.

Output: There are three Output Options.  If Output Range is selected, the
analyst should enter the reference for the upper-left cell where the output should be
presented by Microsoft Excel.  Be sure to allow for at least two columns and several
rows for the output of the DAT.  If the New Worksheet function is chosen, the output
is directed to a new spreadsheet within the existing file and if the New Workbook is
chosen, the output is directed to an entirely new file.  As illustrated in Figure 5.3, we
have chosen to send the output to cell C3.

Summary Statistics: If this box is checked, Microsoft Excel will output the
sample mean, sample standard error, sample median, sample mode, sample standard
deviation, sample variance, the minimum and maximum observations of the sample,
the number of observations and several other statistics to the cell designated in the
Output box.  If this box is left unchecked, no summary statistics will be produced by
the DAT.

Confidence Level for Mean: If this box is checked, the confidence level for the
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sample mean is produced by Microsoft Excel.  The default confidence level is 95%,
although this change be changed by entering a new confidence level in the box by the
percentage sign.  Note that the confidence level must be added to/subtracted from the
sample mean to produce the confidence interval for the sample mean.

K-th Largest and K-th Smallest: These functions produce the maximum and
minimum observations if there are separate ranges of data in the Input Range of the
DAT.  If only one range of data is used, these two functions produce the maximum
and minimum observations in the sample.  If more than one range of data is used in
the DAT, make sure to enter the number of separate data ranges in the boxes
adjoining the K-Largest and K-th Smallest check boxes.

We have presented one example of the operation of the DAT in the DAT-
STAT worksheet in the Examples data file.  Recall that the results produced by the
DAT are identical to the descriptive statistics computed using formulas.
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6. Regression Analysis in Microsoft Excel
As discussed earlier in Section 2 and Section 4, a number of estimation

techniques based on OLS regressions can be used to forecast economic and fiscal
variables.  In particular, we discussed time-trend modeling, exponential smoothing
and bi-variate and multi-variate regression models.  Since all of these techniques rely
on OLS regressions, they can all be estimated using the standard linear regression
function in Excel (LINEST).  However, Excel allows the user to estimate time trends
using the TREND function, while exponential smoothing can be performed with the
GROWTH function.

6.1 Forecasting Using a Time-Trend Model: The TREND Function

The TREND function fits a straight line using the method of  least squares to
an array containing the dependent and independent variables. If the set of explanatory
variables is expanded beyond the range of observations containing the known
dependent and independent variables, the TREND function can produce forecasts of
the dependent variable.  In the time-trend model, expanding the range of observations
requires only creating the values of the time-trend variable as far into the future as
desired.  For this subsection, please refer to the Trend worksheet in the Examples
data file. 

Array Producing Functions

Unlike the functions for the sample mean and sample variance, which return a
scalar result (a single value), the TREND function returns a series of results in
array format. An array formula performs multiple calculations and then returns
multiple results. 

Array functions are created in the same way that basic, single-value functions are
created.  However, before typing the function, the user should select the group of
cells that will contain the function.  Next, the user should type the function and then
press CTRL+SHIFT+ENTER at the same time to apply the formula to the entire
array.

As illustrated in the Trend worksheet, we have included time series data on
a number of economic variables from January 1994 to February 1998.  The TREND
function is used to estimate these variables from March 1998 through December
1998.  For example, we can use this data to create an “out-of-sample” forecast for the
Consumer Price Index of the Russian Federation.  Such forecast is referred to as “out-
of-sample” because we are estimating a value for the dependent variable outside the
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range for which we have data (in this case January 1994-February 1998).

The general form of the TREND function is:

=trend( y (in-sample), x (in-sample), x (out-of-sample), constant)

where y is the dependent variable that we are trying to estimate and x is the
explanatory variable.  Often x is a variable measuring time, but could conceivably also
be another relevant economic or fiscal variable.  In the example presented in the
Trend worksheet, the known (in-sample) values for x (the time trend) and y (CPI)
are contained in cells C4 through C53 (y) and B4 through B53 (x).  The out-of-
sample observations for x (B54:B63) correspond to those observations of the time-
trend variable from March 1998 to December 1998.

The constant option in the TREND function is set to TRUE or omitted if the
intercept coefficient is to be calculated normally or set to FALSE is the intercept is
to be forced equal to zero. 

It is important to note that unlike the LINEST function (as we will see later),
the TREND function does not return the estimated regression coefficients nor does
it provide the analyst with statistical information to test the validity of the model.  The
TREND function only returns values for the dependent variable based on the out-of-
sample independent variable(s).  

Forecasting with the Trend Function:  The TREND function returns an array
of values for the dependent variable equal to the number of out-of-sample
observations for the explanatory variable.  In our example, the number of out-of-
sample observations for the time-trend variable that we seek to forecast is equal to 10,
so before entering the TREND function, it is first necessary to highlight a 10 x 1 block
of cells.  In the Trend worksheet, we selected the cell range from cell H4 to cell H13.
Next, we entered:

=trend(c4:c53,b4:b53,b54:b63,true)

and pressed CTRL+SHIFT+ENTER. As illustrated in cells H4 to H13 of the Trend
worksheet, the forecasted values for the Consumer Price Index of the Russian
Federation continue to increase through December 1998.  Thus, it appears, using the
time trend model and based on the sample of observations from January 1994 to
February 1998, that the Consumer Price Index will continue to increase steadily
throughout 1998.

Forecasts or predicted values are, of course, uncertain.  In all forecasts based
on regression models, there are two sources of uncertainty.  First, uncertainty arises
because the model cannot include all the factors that may influence the series of
interest.  This uncertainty appears in the error terms that are included in each
regression equation.  The second source of uncertainty is the estimators used for the
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model’s parameters.  In the time-trend model, the slope and the intercept which
underlie the time-trend estimates are computed using the least squares method.  As
illustrated through the use of the LINEST function in subsection 6.3, each estimate
is accompanied by an estimated standard error that measures the precision of the
estimate.  The analyst should be aware of these sources of uncertainty and that the
forecasts should be updated when new data becomes available.

6.2 Exponential Smoothing: Forecasting Using the GROWTH
Function

The GROWTH function uses the exponential smoothing method to develop
estimates of the dependent variable of interest.  As with the TREND function and
other regression techniques, the GROWTH function fits a line through an array
containing the dependent and independent variables using the method of least squares.
For the remained of this subsection, please refer to the Growth spreadsheet in the
Examples data file.

The general form of the GROWTH function is similar to that of the TREND
function:

=growth(y (in-sample), x (in-sample), x (out-of-sample), constant)

where y is the dependent variable, and x is the explanatory variable.  The previous
discussion on in-sample and out-of-sample observations with respect to the TREND
function applies equally to the operation of the GROWTH function.  The constant
option is set to TRUE or omitted if the intercept coefficient is to be calculated
normally or set to FALSE is the intercept is to be forced equal to zero. 

The reader should note that when the GROWTH function is used Microsoft
Excel estimates the value of the weighting parameter ?  to minimize the sum of the
squared prediction errors.  If the reader wishes to chose a value for ? , it is
recommended that the reader use the Data Analysis Tool that is covered later on in
this section.

Forecasting with the GROWTH function:  The GROWTH function returns
an array of values for the dependent variable equal to the number of out-of sample
observations for the explanatory variable.  In the first example in the Growth
worksheet, our objective is to develop a forecast of the Consumer Price Index for the
Russian Federation using the GROWTH function.  The in-sample observations for y
(Consumer Price Index) and x (time-trend) are in cells C4 through C53 and B4
through B53, respectively.  The out-of-sample observations for the time-trend
variable are in cells B54 through B63.

Given that we have ten out-of-sample observations for the explanatory
variable, we must first highlight a 10 x 1 block of cells (in this case, from cell H4 to
H13) and type the following formula:
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=growth(c4:c53,b4:b53,b54:b63,true)

and pressing CTRL+SHIFT+ENTER to apply the formula to the entire array.  The
results are contained in cells H4 through H13 of the Growth worksheet.

6.3 Estimating a Linear Regression Using the LINEST Function

The basic idea behind a multi-variate model is that the variation in a variable
may be caused by the variation in several other observable series.  Suppose, for
example, that we would like to attempt to explain the level of Federal Enterprise
Profits Tax collections.  A multi-variate regression model would attempt to explain
movements in the Federal Enterprise Profits Tax collections data series with a set of
explanatory variables such as production, the rate of inflation, the unemployment rate,
among others.  For this subsection, please refer to the Linest worksheet in the
Examples data file.

Multi-variate models are interpreted as causal models.  This means that the
independent variables (i.e., the explanatory variables, such as production, inflation,
etc) should cause changes in the dependent variable (in this case, Federal Enterprise
Profits Tax collections).  The direction of causality is assumed to be from the
explanatory variables to the dependent variable, that is, a uni-directional relationship.

Multi-variate or structural models are quite useful in estimation for several
reasons.  First, models based on economic variables, as opposed to statistical
processes, may provide a good fit for series that are quite erratic.  Second, by
explaining the variation in an economic variable with a set of other economic
variables, the analyst is more able to discern how policy may impact variables of
interest.  Finally, multi-variate models are the most efficient, reliable tool available for
the estimation of economic relationships available in Excel.

Linear Regression Using the LINEST function: The LINEST function in
Microsoft Excel is used to obtain estimated regression coefficients for a linear
regression model.  The LINEST function also reports a variety of statistical tests that
are useful in determining the fit of the model.  

The general form of the LINEST function is somewhat different from the
TREND and GROWTH functions:

=LINEST(y,X, constant, statistics)

where y is the range of cells containing dependent variable and X is the range of cells
(like a matrix) of independent variables.  The constant option is set to TRUE or
omitted if the intercept coefficient is to be calculated normally or set to FALSE is the
intercept is to be forced equal to zero.  The statistics option is set to TRUE if a series
of additional regression statistics are desired or set to FALSE or omitted if the
regression statistics are not needed.  
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Given that the LINEST function returns its results in array format, we must
create a block of cells for the array output, similar to the TREND and GROWTH
function.  Before entering in the LINEST function, highlight a group of cells by
clicking on the first cell of the output range and dragging the mouse until a sufficient
block of cells is highlighted. 

If, for example, we choose to have the LINEST function produce all the
available statistics for a regression equation with k independent variables (excluding
the intercept), we must highlight an array of  k+1 columns wide and 5 rows long.  The
general output format of the LINEST function is somewhat counter-intuitive; it is
illustrated in Table 6.1.  

As can be seen in Table 6.1, the top row of the output array, contains the
parameter estimates produced by the regression, from right to left (not from left to
right).  The second row of the array presents the standard errors below each
parameter estimate.  Other regression statistics (including the R 2 are included in the
output as indicated.

Table 6.1

Output Format of the LINEST Function

...

R2

F-statistic Degrees of
Freedom

Regression
Sum of
Squares

Residual
Sum of
Squares

In the current example, the dependent variable is Real Federal Enterprise
Profits Tax Collections (EPT) and the explanatory variables are the percentage change
in the inflation rate (Inflation), the index for Real GDP (GDP), and the index for retail
sales of goods and services in constant prices (Sales).  The model can be expressed
as:

After highlighting the output array (which is highlighted in bright yellow for
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clarity), the specific form for the LINEST function used in cells I5 through L9 of the
Linest worksheet:

=LINEST(g4:g52,d4:f52, true, true)

Recall, the LINEST function creates an output array for the estimated regression
coefficients, so it is necessary to press CNTL+SHIFT+ENTER to calculate the
LINEST function.  The results are illustrated in Table 6.2 and in the Linest
worksheet.

Table 6.2

Estimation Results - LINEST example

Sales GDP Inflation Intercept

Estimated
Coefficients

85.24 199.6234 4456.932 -25013.37

Estimated
Standard Error

26.61 71.41242 5288.52 6084.944

R2 0.62 1144.06

F-Statistic/

degrees of
freedom

 24.27 45

Regression and
Residual Sum of
Squares

95,307,449.15 58900139

As illustrated in by the R 2, the model explains approximately 62 percent of the
variation in Real Federal Enterprise Profits Tax collections.  An F test is performed
to see if the model’s explanatory power is statistically significant.  The critical value
for the F-statistic, which is calculated in cell J20, equals 4.24 at the 1 percent
significance level.  Since the F-statistic computed by the model (F=24.27) far exceeds
this critical value, thus we reject the null hypothesis that all the estimated coefficients
are jointly equal to zero.  Table 6.2 and cells J22 through J27 of the Linest worksheet
contain the results of the hypothesis tests for the estimated regression coefficients.

A major advantage of the LINEST function is that it allows us to carefully
analyze the influence of each independent variable on the dependent variable.  We find
that the estimated coefficients for real GDP and the Sales have a statistically
significant influence on the amount of EPT collections, even at the 1 percent level of
significance. Furthermore, each of the estimated coefficients for these variables is the
“expected” sign.  The results indicate a positive relationship between the levels of real
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GDP and  Federal Enterprise Profits Tax collections as well as for retail sales and
EPT collections.  On the other hand, while the estimated coefficient for the inflation
rate is positive, it is not statistically significant at any meaningful significance level.
Thus, this suggests that the monthly inflation rate does not appear to significantly
influence Real Federal Enterprise Profits Tax collections.

6.4 Regression Analysis Using the Data Analysis Tool

In the preceding analyses, we developed and estimated linear regression
models without the aid of the Data Analysis Tool.   As mentioned earlier, this Tool
is an option of Excel that often needs to be installed separately.  As with the
production of descriptive statistics, the Data Analysis Tool can assist in the estimation
of linear regression models.  In this section, we discuss the Regression Function
(REG) in the Data Analysis tool (DAT).

Please refer to the DAT-REG worksheet in the Examples data file that
accompanied this note for the examples contained in this section. 

Operating the Data Analysis Tool: The DAT-REG option is quite simple to
operate.  Go to Tools and then click on Data Analysis. Note that there are a variety
of statistical functions that we may use. Click on Regression so that is highlighted and
click on OK.  The Regression Analysis function window will open as illustrated in
Figure 6.1.

In this example, we will replicate the estimation of a linear time-trend model using the
DAT-REG tool.  As illustrated in Figure 6.2, we have selected the input range for the
dependent (y) variable to correspond to the range for the Consumer Price Index,
including the data label (B2:B52).  We have also selected the input range for the
explanatory variable (x) to correspond to the range for the linear time-trend variable,
to include the data label (F2:F52).  As in earlier examples, the in-sample observations
range from January 1994 to February 1998.

Since the first observation in each of the data series is the data series label, we
have checked the Labels option.  If this box remained unchecked, the DAT would
return an error message. We have also chosen the Confidence Level option to
generate confidence intervals for the regression coefficients.  We have chosen to have
Microsoft Excel generate a 95% confidence interval for each of the regression
coefficients.
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Figure 6.2

The Regression Analysis Function Window

The constant is zero option should only be checked if the regression is to be
run without a constant term. In essence, choosing this option forces the regression
line to pass through the origin.

There are three Output Options.  If Output Range is selected, the analyst
should enter the reference for the upper-left cell of the output.  Be sure to allow for
at least seven columns for the output of the regression function.  If the New
Worksheet function is chosen, the output is directed to a new spreadsheet within the
existing file and if the New Workbook is chosen, the output is directed to an entirely
new file.  We have chosen to have the results sent to cell G3 of the DAT-REG
worksheet.

The analyst can also choose to include the residuals and/or the standardized
residuals in the output of the regression function by choosing the Residuals and/or
Standardized Residuals options.  The Residual Plots option should be selected if the
analyst wishes to have Excel generate a chart for each independent variable versus the
residuals. 

Finally, if the Line Fit Plots option is selected, Microsoft Excel will generate
a chart for the predicted values versus the observed values and if Normal Probability
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Plots is selected, a chart that plots normal probability will generated.

Interpreting the Results of the Regression Analysis Tool: The output from the
regression analysis tool is presented in three main categories: regression statistics,
ANOVA statistics, and estimated regression coefficients.

Regression Statistics: Table 6.3 illustrates the regression statistics report by
the DAT procedure.  

Table 6.3

Output from the Data Analysis Tool -Regression Analysis

Regression Statistics
Multiple R 0.965603848
R Square 0.932390791
Adjusted R Square 0.930982266
Standard Error 11.07274238
Observations 50

Analysis of Variance Table: The regression analysis tool also reports the
degrees of freedom (df), the Sum of Squares (SS), and the Mean Square (MS) for the
regression and residuals.  The Analysis of Variance (ANOVA) table also contains the
Total Sum of Squares and the F-test that the estimated coefficients are jointly equal
to zero.   The Significance F statistic is the probability that we accept the null
hypothesis that the estimated coefficients are jointly equal to zero.  

Estimated Coefficients: As illustrated in Table 6.4, the Regression Analysis
Function reports the estimated coefficients, the estimated standard error, the T-
statistic, the p-value, and the upper and lower bounds of the 95% confidence interval
for each of the model’s coefficients.  The reader should note that, as with the
Significance F statistic reported in the ANOVA table, the P-value statistic is the
probability that we accept the null hypothesis that the estimated coefficient is equal
to zero.  Given the relatively high T-statistics, one can see why the P-values are close
to zero. 
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Table 6.4

Estimated Coefficients - Data Analysis Tool -Regression Analysis

Coefficients Standard
Error

t Stat P-value Lower 95% Upper 95%

Intercept 18.0600 3.1794 5.6802 7.68 E-07 11.6673 24.4526
Time 2.7918 0.1085 25.7286 9.85 E-30 2.5736 3.0100

6.5 Concluding Remarks

In this note, we have examined how to estimate linear regression models in
Microsoft Excel and how to develop out-of-sample forecasts based upon the linear
regression analysis.  We discussed the theoretical underpinnings of the linear
regression model and what were the strengths and weaknesses of the Microsoft Excel
software package.  This note provides the reader with the necessary materials to
conduct regression analysis, interpret the results, and to construct statistically reliable
out-of-sample forecasts.

In conclusion, we note that the process of quantitative analysis is a give and
take process, where the theoretical knowledge and intuition of the analyst combines
to form a statistical model that is estimated using the available data.  As we have
illustrated, the qualitative knowledge of the analysts is not surplanted by these
methodologies, merely enhanced.


