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1. Introduction

The purpose of this note is to provide an overview of the most common
techniques used for obtaining summary statisticsand producing forecasts of economic
data. Also presented in this note is the underlying theory for the statistical analyses
and regression approaches. In addition, step-by-step instructions are presented on
how these procedures can be performed in Microsoft Excel. As a result, this
document can serve both as the theoretical and practical foundation for forecasting
economic variables as part of the Multi-Year Budgeting Model of the Russian
Federation.

Two types of analyses can be performed to develop forecasts of economic
data. Expert analysis(formally knownasqualitativeanalysis) reiesontheknowledge
of experienced analyststo produceforecasts based upontheanalysts familiarity with
historical trends in the data. Quantitative analysis, on the other hand, relies on
economic and statistical theory to develop models and forecasts for economic
variables. Nether method is mutually exclusive, and are often used together to
produce morereiableforecasts than could be produced exclusively by either method.

Qualitative analysis methods, or expert analysis, will not be covered in depth
in this note. However, it is often necessary to rely on expert analysis because
frequently historical data is absent or incomplete. While qualitative methods can
produce reasonably accurate forecasts, whenever possible, quantitative methods
should be used to supplement the qualitative analysis process. Rather than viewing
guantitativeanalysisasareplacement of the current useof expert analysis, one should
consider quantitative analysis techniques as a set of tools that can readily generate
forecasts based on objective statistical methods whose principles are widely known
andtransparent. Inthismanner, theability to produceaccurateforecastsfor variables
of interest is substantially enhanced.

Theremainder of thisnoteisorganized into fivesections. Section 2 provides
ageneral overview of the statistics and forecasting techniques presented in this note.
Thetheoretical background for thesetechniquesis presented in Section 3 (Statistics)
and Section 4 (Regression Analysis). The remaining sections (Sections 5 and 6)
provide instructions on how to perform the reviewed analyses in Microsoft Excel.
Thus, thisnote presents anin-depth review of therelevant theory, whilealso allowing
readers who are already familiar with the theoretical background to immediately
advance to the application in Sections 5 and 6.
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2. Overview of Statistical Methods and Forecasting
Techniques

2.1

2.2

A wide variety of techniques can be used to develop forecasts for the
economic variables or “driving variables” for the Multi-Year Budget Model of the
Russian Federation. Invariably, the best approach is to develop forecasts for the
relevant variable using several different methods and then to evaluate the results
provided by the different forecasting methods. In this manner, one can identify the
most suitable way to estimate each variable of interest. This section provides a non-
technical overview of the estimation techniques covered inthisnote. Thetheoretical
background of each approach isconsidered in more detail in Sections 3 and 4, while
the use of these techniques in Microsoft Excd is discussed in Sections 5 and 6.

Expert Analysis

Expert analysis, sometimesreferredto asqualitativeanalyss, canbeavaluable
analytical tool inavariety of situations; the value of an individual with long-standing
experiencewith the economy should not bediscounted. Expert analysisisoftenreied
on to produce forecasts when the underlying data is incomplete, suspect, or not of
sufficient lengthto devel op aforecast for theforecast period of interest. For example,
few economic models produce accurate estimates of the economic growth ratefor a
multi-year framework. Asaresult, estimates for this variable are often produced an
expert economic forecaster or by reaching consensus among a group of experts.

While expert analysis can produce reasonably accurate results, often more
accurate estimates can be produced when expert analysisis used in conjunction with
quantitative forms of analysis.

Statistical Analysis

Basic statistical methods can be applied in a variety of situations and often
produce results that are as reliable as more sophisticated methods of analysis.

A straightforward example of the use of statistical techniques could be the
projection of the rate of economic growth. Historical data could be used to estimate
the average growth rate for the Russian economy for the past several years, and it
could be assumed that the economy will grow at thisrateinthe mediumterm. Onone
hand, this approach is very intuitive and does not require significant effort by the
analyst. On the other hand, the accuracy of this estimation technique is highly
dependent on the stability of the economy, asthe estimate does not capturethetrends
over timeinthevariableunder investigation. Inaddition, theaccuracy of thisestimate
is compromised by the fact that it is not based on the underlying forces that drive
economic growth.

Despite these weaknesses of basic statistical estimates, the use of descriptive
statistics allows the analyst to pose formal hypotheses and validate them using
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2.3

scientific and objectivemethods. Asaresult, theuse of dementary statistical analysis
is an important complement to expert analysis in the process of making multi-year
economic and fiscal estimates.

Ordinary Least Squares Regression Analysis

Regression analysis is an extremely useful procedure that quantifies the
relationship between one variable (the “dependent” variable) and one or more other
“independent” variables. For example, we could employ regression analysis in the
context of the revenue estimation to quantify the relationship between the amount of
revenue collections for a certain tax and one or more variables that -- directly or
indirectly -- influence the level of revenue collections.

A simpleexamplemay beillustrative. Figurel showsthere ationship between
total personal income and revenue collections for agroup of regions. Each dot inthe
figure represents the amount of revenue collections and the level of personal income
for anumber of years. Just looking at the pattern of the dots, it is obvious that there
exists a positive relationship between the level of revenue collections and thelevel of
personal income. In order to quantify this relationship we could, for example, draw
an straight linethrough the group of dots, and measure the slope and intercept of this
line. Thisisin essencewhat a regression achieves.

Figure 1: Example of Regression Analysis

Revenue Collections
(in bn Rb)
*
*

0 1 2 3 4 5 6 7

Total Personal Income (in bn Rb)

In this simple example, the relationship between revenue collections and personal
income can be expressed by the equation:

Tax Revenue = B, + B, "APersonal Income) + errors
Theordinary least squares (OL S) regression procedurewill computethevaluesof the
parameters B, and B, (the intercept and slope, respectively) that best “fit” the

observations. In the given example, the parameters were calculated as B, = 0.9 and
B, =0.6.
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2.4

2.5

Obvioudly, no straight line can exactly run through all of the points. The
vertical distance between each observation and the linethat fits“best” (theregression
line) isreferred to aserror. The OLS regression procedure calculates the parameter
values by minimizing the sum of the squared errors for all observations. Hence the
name of the regression method: ordinary least squares.

OL S analysis has many desirable properties; it isthe most reliable method of
estimating linear relationships between economic variables. OLSis quiterobust and
can be utilized in avariety of environments, but unlike expert analysis or descriptive
statistics, is not an “intuitive’ approach to the data. OLS regressions do have
limitations; for reasons discussed later, OL S should not be used if it appearsthat the
data are correlated across time, that is, if the current period's value is a function of
the value in the previous period.

When only two variables areincluded in aregression (one dependent and one
independent variable) this is referred to a bi-variate regression. Exactly the same
approach can be used when more than one independent variable is used; this is
referred to as a multi-variate regression. The statistical properties of regression
analysis are theoretically derived in Section 4, while Section 6 describes how to
perform an OLS regression in Microsoft Exce. The remainder of this section
discusses different forecasting techniques that rely on OL S regressions.

Forecasting Technique: Time-Trend Models

One OLS technique that is discussed in this note is time-trend modeling.
Time-trend modeling attempts to explain the movement in avariable as a function of
time. Thetrend variable is merely a counter, increasing by one for each time period
(monthly, quarter, year). For example, one could imagine that the level of tax
compliance (the degree to which taxpayers comply with the tax laws) is steadily
increasing (or decreasing over time). Therefore, in this example,

Tax Compliance= B, + B, Y ear.

Time trends can be quite effective in modeling variables that appear to be
steadily increasing or decreasing over time. For example, later in this note we will
discuss how to model the Consumer Price Index (CPI) with anincreasing time- trend
model since it appears that the CPI for the Russian Federation is steadily increasing
over time. However, using a time-trend moded will not provide the analyst with the
same level of accuracy and understanding of the underlying relationships of the
dependent variable with the economy.

Forecasting Technique: Exponential Smoothing

Another OLS technique that we will discuss in this note is exponential
smoothing. Exponential smoothingtriesto predict thechangeinavariableby looking
at how this variable has changed in the past. In general,
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2.6

j)ﬁl = ayt+a(1_a)yt-1+ 0‘(1‘0‘)2J’,_2
+nt a(l-a)ly + (1-a)y,

In essence, the dependent variableis defined as awelghted average of its past values,
where the past values are weighted as a function of a parameter, ?. The value of ?

is determined by the regression. Exponential smoothing is quite useful in updating
forecasts generated by other processes but should not be used to generate estimates
for multi-year periods. However, one could use this technique to update multi-year
forecasts for one additional year that were generated using some other approach.

Forecasting Technique: Bi- and Multi-Variate Regression

Models

2.7

Certain economic models attempt to examine the relationship between one
variable of interest (the dependent variable) and one or more other variables
(independent variables) using an OLS regression. A common example is that a
person’s monthly income is expected to be influenced by his or her age, years of
education, years of work experience, geographical factors and gender. Given a
sufficient amount of data, a multi-variate regression model would be ableto compute
the rlative influence of all these factors on a person’s monthly income.

We can use the bi-variate models (a regression model with only one
independent variable) when we wish to investigate a specific relationship between
variables, or when data is simply unavailable for other reevant variables.
Multi-variate models, on the other hand, require more complex data sets but are often
the most powerful models in assisting the analyst in understanding the underlying
relationships between economic variables. One disadvantage to using regression
analysisisthat it is the least intuitive of the methodol ogies discussed in thisnote. It
presents the analyst with many challenges and policy makers are likely to be less
receptive to relying on the regression analysis approach for policy purposes.

Time-Series Analysis and Other Advanced Techniques

A variety of other, more complex regression techniques are available to
forecast economic and fiscal variables, such as time-series analysis. These more
complex techniques are not discussed inthisnote. In many cases, thedata seriesare
not of sufficient length to support these more advanced forms of statistical analysis.
Second, the data seriesthat are availablefor the Russian Federation are often subject
to a high degree of volatility, invalidating the use of more sophisticated techniques.
Finally, Microsoft Excel does not support these techniques, thus it would be
impossible to demonstrate these methods without employing another software
package.
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3. Theoretical Review: Descriptive Statistics

3.1

3.2

The purpose of this section is to review some basic statistical concepts and
methods that are used inthefollowing sections. Asmentioned before, thetheoretical
sections are included in this document for completeness and may serveto refresh the
reader’s memory of the basics of statistics. Readers who are familiar with these
concepts may chooseto skip thischapter and continuewith Chapter 4 which presents
the theoretical underpinnings of regression analysis, or straight to Chapters 5 and 6,
which discuss the application of the estimation techniques in Microsoft Excedl.

The remainder of this section will present a general overview of descriptive
statistics such as measures of central tendency and dispersion; calculating confidence
intervals; and hypothesis testing.

Descriptive Statistics - General

The primary objective of any statistical analysis is to make statistical
inferences, that is, to draw testable conclusions about a population based upon
information contained in a sample drawn from the population of interest. A
population is any set of items of interest, from the population of taxpayers to the
population of factories producing heavy machinery. A sample is subset of items
drawn from the population of interest. Any characteristic of the populationiscalled
a parameter while any characteristic of the sample is denoted as a statistic. A
statistic is merely an estimate, good or bad, of a population parameter.

Upon drawing a sample from the target population, the data contained in the
samplecanbeexamined using descriptivestatistics. Descriptivestatistics, toinclude
such statistics as the sample mean, sample standard deviation, and sample variance,
are useful in representing the data in recognizable terms. Statistical inferences are
then made through two types of methods: estimation and hypothesis testing.
Estimation isconcerned with calculating the specific value of an unknown population
parameter. Hypothesis testing is concerned with making a decision about a
hypothesized value of an unknown population parameter.

Descriptive Statistics - Measures of Central Tendency

A descriptivestatistic may bedefined asany singlestatistical measure, derived
from a sample of data, that is designed to illustrate a specific feature of the sample
data set. The most common types of descriptive statistics are measures of central
tendency and variability.

Wefirst examine the measures of central tendency as these are necessary to
calculate measures of variability. Measures of central tendency are used to calculate
the ‘average’ value of a variablein the sample in easily recognizable units. Several
measures of central tendency arecommonly used, to includethe sample mean, sample
median, and sample midrange. In this subsection, we examine how each of these
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measures of central tendency is calculated.

SampleMean: Thesamplemeanor ‘average’ of avariableX isnoted as X and
can be expressed as:

,- (3.1)

where n is the measure of sample size, X, X,, ..., X,, are the n independent
observations of X, and? denotes summation. For example, if we had a sample of 50
observations on thefederal share of Value Added Tax collections on amonthly basis,
thenn =50, X,, X,, ..., X, would each be equal to one specific month in the sample,
and the sample mean would represent average federal Value Added Tax collections
for the time period covered by the sample.

Sample Median: The samplemedian or ‘middl€’ isequal to the middleranked
observation of the variable X and isdenoted asM. For example, if we had alist that
ranked all subjects of the Federation by their wealth, the sample would contain 89
observations. The median observation, M, would be equal to the 45™ observation.
If the data sample has an even number of observations, the median would be
calculated by averaging the two middle observations.

Sample Midrange: The sample midrange measures the distance between the
highest and lowest observationsfor the variable X and isdenoted asM R. The sample
midrange can be expressed as:

MR = max min (32)

Thereader should note that the sample mean is often preferred to the sample
median or sample midrange since the sample mean utilizes al the observationsin the
samplewhilethe samplemedian only presentsinformation on one observation andthe
sample midrange is the average of the difference between the two outlying
observations.

This being said, the sample mean is not always the preferred measure of
central tendency. Sometimes, the sample mean is subject to theinfluence of outliers.
Outliers are observations that deviate significantly from the common pool of
observations. Intheevent that a variable contains widely dispersed values, the other
measures of central tendency (especially the median) may convey more pertinent
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information than the sample mean. In the next section, we discuss measures of
variability that thereader can useto determinewhat measure of central tendency best
represents the sample data in question.

Descriptive Statistics - Measures of Variability

Asjust discussed, measures of central tendency are used as a measure of the
“average’ levd of a variable Measures of variability are used to determine how
“spread out” the observations are around that “average.” As more observations
deviate from the common pool of observations, the dispersion or variance of the
variable in question increases. In this subsection, we will examine two common
measures of variability, the sample variance and sample standard deviation.

Sample Variance: The sample variance, S? , measures the variability of a
variable X in terms of the average of the sguared deviations of the sample
observations from the sample mean. The sample variance can be expressed as.

Sample Variance = S?* = T (X-X) (3.3)

where n is the number of observations in the sample; X;, X,, ..., X, are the
independent observations for the variable X; and X is the sample mean.

One problem with the sample varianceisthat it is expressed in squared units
of the sample variable. To diminate this problem so as to have a measure of the
variability expressed in the same units as the variable of interest, we can use the
sample standard deviation.

Sample Standard Deviation: The sample standard deviation, S,, isthe square
root of the average of squared deviations of the sample observations from the sample
mean. Simply put, the sample standard deviation is the square root of the sample
variance or:

1 I =
T (X-X) (3.4)
n-1;-1

X

Sample Standard Deviation = S = J

As before, n is the number of observations in the sample; X, X,, ..., X, are the
independent observations for the variable X; and X is the sample mean.

Coupled with the measures of central tendency, the measures of variability
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3.4

provide us with an assessment of the average value and dispersion of the variable of
interest. However, calculating these measures by hand can prove quite tedious,
especially in large samples. Asillustrated in Section 5, we can use Microsoft Excd
to circumvent this manual calculation process and also to reduce the probability of
human error that arises when calculations are done by hand.

Estimating Confidence Intervals

In the previous two subsections, we defined the sample mean and sample
variance, among others. The process of devel oping specific estimates for aunknown
population parameter of interest is called estimation and the specific estimates are
called point-estimates. Our line of inquiry now focuses on the probability that our
point-estimates liewithin arange of values that arelikely to contain the true value of
the population parameter. Simply put, we want to know whether our point-estimate
is a reasonable estimate of the population parameter.

In general, to estimate a parameter of interest, the standard procedureis to
draw a random sample of observations from the population of interest, develop the
point-estimatefor the population parameter, and then calculateaconfidenceinterval
for the population parameter. A confidenceinterval isarangeof values withinwhich
we have a predetermined level of confidence that the value of the population
parameter lies within the range covered by the confidence interval.

More technically, for any population parameter ? , we can develop arandom
variable § , where 8 isthe point-estimate of the population parameter ? . We utilize
the‘”N" signto differentiate between the point-estimate and the population parameter.
Thesizeof theconfidenceinterval for the point-estimateisdependent upon what level
of confidencewith whichwewishto becertain. For example, we could set thelower
and upper limits of the confidence interval in a manner so that we know with 90
percent confidencethat ? falls inside the confidenceinterval. This means that if we
were to take repeated random samples of similar size from the same population, 90
percent of such intervals would statistically be expected to contain the parameter ? .

Tocalculateaconfidenceinterval, threevariables must beknown. First, what
is the level of confidence? Second, what is the point-estimate of the parameter?
Third, what is the estimated standard error of the point estimate?

Confidence Intervals

When developing a confidence interval, note that:

? Parameter ? is a fixed and unknown constant, based on the full population;
? The lower and upper limits of the confidence interval are random quantities; so
? The boundaries of the confidenceinterval vary from sample to sample.
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First, the desired leve of confidence needs to be determined. The higher the
level of confidence, the more likdly that the confidence interval will contain ? .
However, atrade-off exists, inthat choosing ahigher level of confidencewill increase
the distance between the boundaries of the confidence interval. For any given leve
of confidence, let? = (1-Leve of Confidence), where? isthesignificanceleve of the
confidence interval.

Second, determine the point-estimate () of the parameter. As discussed
previously, the point-estimate is a specific value calculated using a formula and a
random sample of data drawn from the population of interest. A point-estimate may
be an estimate of the population mean, population variance, population median, or a
variety of other descriptive statistics.

Third, what is the estimated standard error the point-estimate? Slightly
different than the sample standard error, the estimated standard error for a point-
estimate can be expressed as.

1
n-1 (3.9)

Bilis
S

where S, is the sample standard deviation of the variable X, n is the number of
observations in the random sample, and X is the sample mean of X.

For any point-estimate 8, the boundaries of the confidence interval are
defined as:

(3.6)

5its

n—-1,1-—
2

wheret represents the t distribution with n - 1 degrees or freedom at ? significance
level. The respective values of the t distribution are contained in many standard
statistical books or can be computed using Microsoft Excdl.

3.5 Hypothesis Testing for the Mean, Median, and Midrange

In the previous section, we discussed how to estimate a confidence interval
for the point-estimator of a population parameter. Given an estimated confidence
interval, we can determinewhether or not the point-estimator is*reasonabl€ estimate
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of the population parameter. For example, if we developed a confidence interval for
an estimate for the sample mean, we would be able to determine whether the sample
mean was within the plausible range of values for the population mean.

However, therange of plausible values may berdativey largeif one wishes
to make inferences about a specific value. If we wished to test whether the
population parameter was equal to X, instead of X,, where both X, and X, were
within the confidenceinterval for the population parameter; we would not be ableto
conduct this test using the confidence interval approach.

We can, however, use hypothesis testing to test whether the estimated value
of a parameter of interest varies significantly from the hypothesized value. Simply
put, we can use hypothesis testing to conclude whether or not the population
parameter is equal to X, instead of X,.

Aswith the estimation of a confidence interval, we must first answer aseries
of question in order to test a hypothesis. First, what are the null and alternative
hypotheses? Second, what is the significance level of the hypothesis test? Third,
what test statistic will be used to test the null hypothesis? Fourth, what isthe critical
valueof thetest statistic? From these questions, we can computethevalue of thetest
statistic and determine whether or not to reect the null hypothesis.

Null and Alternative Hypotheses: In general, hypothesistesting involvesthe
statement of arule, expressed in terms of the data, that dictates whether or not the
null hypothesis should bergected or not. Traditionally, thenull hypothesis(H,) isthe
statement that we wish to examine and the alternative hypothesis (H,) is the
conclusion that we will draw if we rgject the null hypothesis. Let us assumethat we
wish to test whether the population mean incomeis equal to $54,000. Our null and
alternative hypotheses would then be:

H, : Mean Income = $54,000 or p = $54,000
H,: Mean Income + $54,000 or p + $54,000 (3.7)

Significance Leve of a Hypothesis Test: Ideally, we would like to diminate
the possibility of incorrectly rgecting the null hypothesis when it istrue. However,
atradeoff existsin that aswe decrease the likelihood of incorrectly rgecting the null
hypothesis, we increase the probability that we will fail to rgect the null hypothesis
whenitisfalse. Thus, thebest possible course of actionisthat for agiven probability
of regjecting the null hypothesiswhen it istrue (? ), thetesting procedure used hasthe
smallest probability of failing to rgject the null hypothesis when it isfalse (?). We
denote? asthesizeof thetest and ? isalso known the significance level of the test.
The power of thetest is expressed as (1 - ?).

In our current example, we wish to test whether mean population incomeis
equal to $54,000. As previously discussed with respect to developing a confidence
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interval, we wish to have a predetermined leve in confidence in the test. For this
example, we will test the null hypothesis at a 90% level of confidence or 10%
significance levd.

The Test Statistic: Recall that the general form of the confidence interval is:

X
6 + foge — (3.8)

and that the range of plausiblevaluesfor the population parameter of interest isgiven
by Equation 3.8. We can easily manipulate Equation 3.8 to construct the following
test statistic:

(3.9)

wheref isthe point estimator of ? ; S, isthe estimated standard deviation; andnthe
number of observations in the sample. As with the construction of the confidence
interval for the sample mean, the T-statistic is distributed with (n-1) and (1-? /2)
degrees of freedom.

Using the point-estimate for the population parameter of interest, we will be
ableto test thenull hypothesis. If thecalculated T-statisticin Equation 3.9 islessthan
thecritical T-statistic, then we“fail torgect” thenull hypothesis. Failingtoreect the
null hypothesis leads one to conclude, based upon the sample information, that it is
likely that the population parameter is equal to the hypothesized value in the null
hypothesis. If the calculated T-statistic in Equation 3.9 is greater than the critical T-
statistic, we would then “rgect” the null hypothesis, and we would conclude, based
on the sample information, that the population parameter is not equal to the value
contained in the null hypothesis.
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4. Theoretical Review: Regression Analysis

4.1

4.2

Introduction

As discussed in Section 2, linear regression models are used to study the
relationship between a dependent variable and a set of independent variables.
Multi-variate regression analysis attempts to explain variations in the dependent
variabley through movementsin the k explanatory (independent) variables x,, X,, ...,
X.. Thegeneral form of the multi-variate linear regression modd is:

Yi :f(xu’ Xizs s xik) + €,
4.2
Y, = Bo + pl Xy * Bz Xpp + o F Bk Y t €

The modd incorporates the randomness that is prevalent in the real-world, hencey
is dependent not only on x,, X,, ..., X, but also on the stochastic element ?, hencey
isafunctionof x and? ory =f(x,?).

Theremainder of thischapter will discussthe assumptions of the multi-variate
moded, the derivation of the model’ s estimators, and a measure of the model’s “fit.”.
Sinceatimetrend model is simply aregression model that uses ameasure of timeas
its only independent variable, this approach requires little further theoretical
explanation. Exponential smoothing is discussed in greater detail in subsection 4.5.
Instructions on how to estimate regressions with Microsoft Excel are discussed in
Section 6.

Assumptions of the Multi-Variate Model

The purpose of thissectionisto briefly review the underlying assumptions of
the classical linear regression model. In general, these assumptions address the
following issues:

1 Linear functional form;

2. |dentifyability of the modd parameters;

3. Expected value of the disturbance given observed information,;
4, Variances and covariances of the disturbances give observed
information;

5. Nature of the sample data with respect to the independent variables,
and,
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6. Probability distribution of the stochastic part of the modd.

The purpose of these assumptions is to describe the form of the multi-variate linear
regression model and the relationships among its components. Furthermore, these
assumptions dictate the appropriate estimation and inference procedures and are
therefore critical to the modd.

Linear Functional Form: In the context of the multi-variate linear regression
model, the assumption of linearity refers to the manner in which the regression
parameters (?'s) and the disturbance term (?) enter the regression equation. In
general, the assumption of linearity meansthat the functiony = f(x,, X,, ..., X,) hasto
be expressed as alinear equation, or transformableinto alinear equation. However,
by transforming theindependent variables, one can estimatenon-linear functions. For
example, the equations:

y=20+7:%+?
y=70+7log(x,) +?
Y=o+ 7 X +?,%°+7?
y=€°%x""x,? (equivalent tolog(y) =?,+ ?, log(x,) +? ,log(x,) + ?)

areall linear insome function of x and meet the linearity assumption. Moreformally,
the linearity of the regression modd assumption is stated as:

y = XP +€ 4.2

whereyisaT x 1 vector containing the independent variable, X isaT x k matrix of
independent variablesand ? isthek x 1 vector of parameters; ? isan T x 1 vector of
the stochastic error.

Identifyability of the moddl parameters: The second assumption is that no
exact linear relationship exists among the variablesin the modd; the columns of the
matrix X arelinearly independent. This meansthat none of theindependent variables
in X are equal to a linear combination of one or more of the other independent
variablesin X. Moreformally, X isan x k matrix with rank k.

Expected value of the disturbance given observed information: Given the
meatrix of independent variables X, we further assumethat the disturbanceterm? has
an expected value of zero at every observation. In principle, the mean of each
disturbanceterm?,, conditioned on all observations x; iszero, that is, no observations
in X convey information about the expected value of the disturbance term. This
implies that the disturbance terms are ‘white noise’ or purely random draws from
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some population of disturbanceterms. Thisassumption canbeformally expressed as:

E[e|X]=E[€e|X]=E[e,|X]=.=E[e|X] = 0 4.3)

Variancesand covariances of thedisturbancesgiveobserved information: The
fourth assumption concerns the variances and covariances of the disturbance terms:

Var[ei|X] = ¢? Joralli=1,..,n (4.4)

Cov[ei,ej|X] =0 forall i=+] (4.5)

We assume that the data has constant variance or is homoscedastic and displays no
autocor elation. Notethat theseassumptions pertainto the variances and covariances
conditional upon theindependent variables. Theseassumptions, which arerdaxedin
morerefined models, imply that (1) the variation in the disturbance termsis constant,
and (2) disturbances are truly independent, that is, a preceding or succeeding
disturbance has no influence on another disturbance term.

Nature of the sample data with respect to the independent variables: We
further assume that the independent variables in the observed sample are non-
stochastic, that is, the explanatory variables are a known series of constants. This
assumption, which is equivalent to stating that the explanatory variables arefixed in
repeated samples, allows us to disregard the sources of variation in the explanatory
variables and focus on the relationship betweeny and X.

Probability distribution of the stochastic part of the modd: The final
assumption of the classical linear regression mode is that the disturbances are
normally distributed with zero mean and constant variance. Thisaddstheassumption
of normality to the assumptions about the mean, variance, and covariance of the
disturbance terms conditional on the matrix of explanatory variables.

Deriving the Estimator

As previously discussed, the objective of the least squares method is to
minimize the sum of the squared errors, that is, to minimize the sum of the distances
between the observed and predicted values of y. This objective function can be
written as:
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ele = (y-9Y(y-9) = (y-XBY(y-XP) (4.6)

whereeisaT x 1 vector of residuals, and € isthetransposeof e. Thus, € eresults
isascalar result, that is, the sum of squared errors.

To minimize (4.6), we must first obtain the first order conditions. We
differentiate (4.6) with respect to ? and setting the resulting expression equal to 0
resultsin:

S(e’e)
op

= 2X' (y-Xp) =0 4.7)

We can proceed to solve (4.7) by dividing through by 2 and multiplying through by
the transpose of the X matrix (X’):

2X'(y-XBp) = 0
X'y -XXB = 0 (4.8)

X'y = X'XPB

In order to solve (4.8) for ?, we must multiply both sides by the inverse of X'X,
which results in the least squares estimator:

B = (xXXx)y'X'y (4.9)

Statistical Properties of the Estimator: \We can now examinethe properties of
the least squares estimator under the standard set of assumptions. We are concerned
about the least squares estimator’ s propertiesin that the estimator measures the true
population parameter and we wish to discern how accurately this measurement
occurs. Notethat in order to examine the properties of the least squares estimator,
we must assume that the linear moded is, in itsdf, the correct model to estimate the
population parameters.

We can use the following four measures to evaluate the statistical properties
of the least squares estimator:

1. Unbiasedness
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2. Consistency

3. Variance

4. Mean Square Error

Unbiasedness. An estimator is unbiased if its expected value is equal to the
population parameter, that is, f is unbiased if E[f] = E[P]. On average, an
unbiased estimator will be equal to the true value of the population parameter.

Consistency: An estimator is consistent if the estimator converges in
probability to the population parameter. 1n essence, as we increase the sample size
to infinity, the probability that the estimator deviates from the true population
parameter approaches zero.

Variance: Asthe variance of an unbiased estimator declines, the precision of
the estimator increases. Intuitively, if wehavetwo unbiased estimators, theestimator
with the smaller variance is the more accurate estimator.

Mean Square Error: Mean sguare error is equal to the variance of an
estimator plus the square of its bias or:

MSE = var (B) + bias(P)> = wvar (B) + (E[B] - B ) (4.10)

Aswith the variance measure, asthe Mean Square Error of an estimator declines, the
precision of the estimator increases. Thus, it is possible for an unbiased estimator
with a relatively large variance to be less precise than a biased estimator with a
relatively small variance and bias.

Thus, coupled with the assumptions of subsection (4.2) and the assumption
that the columns of the X matrix are linearly independent, we know:

1. The modd is wel-defined.

2. On average, the omitted variables, sampling error, and other forms of error
have no impact on the dependent variable.

3. The least squares estimator is consistent.

4, If the columns of X areindependent of the error terms, then the least squares
estimator is also unbiased.

5. The variance of the least squares estimator is var () = o® (X'X)!.

Estimation and Forecasting Methods 17



4.4

These assumptions and results are sufficient to show that, within the class of linear,
unbiased estimators for ? , the least squares estimator has minimum variance, and is
thus the most precise estimator for ? .

Determining the “Fit” of a Model and Parameters

Several measures exist to determinehow well amode ‘fits' theobserved data.
We could run several model's and compare the Residual Sum of Squares and choose
the model that minimizes the Residual Sum of Squares. However, it can be shown
that the Residual Sum of Squares can be scaled arbitrarily just by multiplying the
values of y by the desired scaled factor. Another measure that may be used is the
coefficient of determination or R2

TocalculateR?, wemust first determine how well a specific model ‘ captures
the variation in the dependent variable. Let the Total Sum of Squares be equal to:

SST = 2 (y,-y)P = SSR + SSE (4.11)

that is, the total variation iny is defined as the sum of the squared deviations of y
fromits mean. The Total Sum of Squares is also equal to the Regression Sum of
Squares (SSR) plus the Residual Sum of Squares (SSE).

Proceeding fromthedefinition of the Total Sum of Squares, we can definethe
Residual Sum of Squares as:

SSE = T e = Z(y -9, ) (4.12)

and the Regression Sum of Squares as:

SSR = P (x,-XY=2(9-7) (4.13)

A regression will “fit” wdl if the deviations of y from its mean are more
largely explained by deviations of x from its mean than by the residuals. R*is a
measure that captures this concept and is equal to:

SSR | SSE
SST SST

R’ = (4.14)

The coefficient of determination (R?) will vary between zero, in which case the
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independent variables have no explanatory power whatsoever, and unity, in which
case the independent variables explain all variation in the dependent variable.

An other important measure how well theregression is performing iswhether
each parameter hasa statistically significant influence on the dependent variable. We
can use Equation 3.6 from Section 3 to develop test statistics for the estimated
intercept and slope coefficients. To test the null hypothesis whether an estimated
regression coefficient is independently equal to zero, we can use the following
equations:

l‘(ﬁ)=(6_0) = B

415
se(f) se (f) @19

Note that for a two-tailed test where the null hypothesis is that the estimated
coefficient is equal to zero, the calculated T-statistic is equal to the estimated
regression coefficient divided by its sample standard error.

Exponential Smoothing

Exponential smoothingisusedfor continually updating aforecast to account
for recent changes in the data series of interest. Exponential smoothing applies to
data series without time-trends and to series with both linear and nonlinear time-
trends. This method of forecasting is primarily used to update or revise forecasts
generated by other processes and is best used for updating forecasts for one period
ahead. The cavesat is that exponential smoothing should not be used for long-term
forecasts.

Exponential smoothing ismost powerful when the data series hasbeen subject
to large, unexpected shocks or innovations. Thereader should be aware that even a
seriesgoverned by astrong linear time-trend may be subject to wide variationsaround
the time-trend. While alinear time-trend model may depict the general, long-term
movement of thedata series of interest, point forecasts based on thelinear model may,
infact, missthe unexpected fluctuationsin the series. An updated forecast generated
through the use of exponential smoothing may provide more accurate short-term
forecasts.

With exponential smoothing, therevised estimatefor the next forecast period
issimply the sum of the estimate for the current period and a portion of the forecast
error in the current period or:

P = Pt oy, ~9) (4.16)
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where ? is the weight given by the exponential smoothing function to the forecast
error. Sensible values for ? range from 0 to 1, although ? can vary outside this
range. We can rewrite Equation 4.16 so that the updated forecast is the weighted
sum of all past values of the series with the weights equal to powers of the ?
parameter or:

Py = Gy, +a(l-a)y_, + oc(l—oc)zyx_2

ot 0 (l-a)ty + (1-a)y, (417)

Consider theimpact of alarge? . A large? will result in more recent observations
having more influence on the new forecast relative to older observations. Thus,
forecasts developed using large values of ? will respond more quickly to changesin
the data series than forecasts developed with asmall ? . Thetradeoff isthat forecasts
developed with large ? values will be subject to the influence of large shocks or
innovationsinthe data series. However, in most cases, it is not necessary to estimate
the? valueinthat thebest choicefor ? isthevaluethat minimizesthe sum of squared
prediction errors.
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5. Statistical Procedures in Microsoft Excel

5.1

Introduction

The User Manual for the Multi-Year Budget Model for the Russian
Federation contains a section with general directions for the use of Microsoft Excdl.
This section complements and builds on the general instructions contained inthe User
Manual. Readers who are familiar with Microsoft Excel and the use of basic
statistical operators may choose at move to the next section at their discretion.

Accompanying this note isafloppy disk containing this note and a Microsoft
Excd data file. We will use the Microsoft Excd data file throughout this note to
illustrate how to calculate various functions and to estimate re ationships between
variables of interest. Our first step is to open this data file. At this point, start the
Microsoft Excd program.

Opening aWorkbook: To open the data file on the floppy disk, you must use
the OPEN command. Look at the top of Microsoft Excel program for a list of
commands, to include File, Edit, View, Insert, Format, among others. Taking the
mouse, point at the File command and click on File. When theFile menu opens, ook
for the Open command and point and click on the Open command. A rectangular
window will appear and at the top of the window isasmall box with L ook In to the
left of the small box and a arrow to the right of the small box. Click on the small
arrow to seealist of drives availableto you at thisperiodintime. Look for and click
onthe‘A’ or floppy drive. Whenthe'A’ drive opensin therectangular window, |ook
for the file called Examples. Click on this file and then click on Open so that
Microsoft Exce will open the appropriate file. Figure 5.1 illustrates the Example
data file open in Microsoft Excdl.

Workbooks and Worksheets: Notethat in Figure5.1 and inthe open datafile
in Microsoft Excd that there are a series of tabs starting in the bottom left hand
corner of thedatafile. In Microsoft Excd, theentiredatafileis called aWorkbook.
A workbook consists of several individual Worksheets which contain data, charts,
and other items of interest. To movefrom oneworksheet to another, simply click on
the tab of the worksheet that you wish to move to and this worksheet will appear.
The active worksheet is highlighted in white asillustrated in Figure 5.1.

Worksheet Organization: Each worksheet consists of a spreadsheet of rows
and columns which resembles a chessboard. Asillustrated in Figure5.1, eachrow is
numbered and each column isrepresented by aletter. A specific cell isdefined by its
location inthe spreadsheet, so in this example, cell B2 contains the number 4210.40.

Entering and Deleting Data: To enter data in Microsoft Excel, the reader
merely has to select the cell into which the data isto be entered. Selecting a specific
cell is done by pointing the mouse arrow at the cell and then clicking on the specific
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5.2

cdl of interest. Oncethecdl ishighlighted (seecdl C11 in Figure 5.1), typein the
dataand pressENTER. Thedataisnow apart of theworksheet. To deletea specific
data cdl, click on the cell containing the data you wish to delete and press the
DELETE button.

Now that we have covered the basic operations of opening an Excel
Workbook, finding and selecting a Worksheet, and Entering and Deleting Data, we
turn to calculating the measures of central tendency and variability using Microsoft
Excd.

Figure5.1

[llustration of Open Excel Workbook

. Microzoft Excel - Examples
SE File Edit Miew Insert Format Tools Data
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Calculating Measures of Central Tendency

In this subsection, we will examine how to calculate the measures of central
tendency and variability using Microsoft Excd. In many cases, Microsoft Exce has
“built-in” functions that we will be ableto useto calculate the statistics of interest; in
other circumstances, we will have to calculate these statistics without relying on the
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existing functionsin Microsoft Excd. For the remainder of this section, pleaserefer
to the M easures worksheet of the Examples datafile.

The first task of this subsection is to calculate the measures of central
tendency, to include the sample mean, sample median, and sample midrange. The
M easur es worksheet already contains the necessary data. 36 observations on the
federal shareof the Value Added Tax collections (in millions or Rubles) from January
1995 to December 1997 are contained in the M easur es worksheet.

Note that the first data cell containing observations for Value Added Tax
collectionsis cell B2 and that the data is separated into columns, where each column
contains observationsfor oneyear. Thus, theobservationsarein cdlsB2toB13, C2
to C13 and D2 to D13 for 1995, 1996, and 1997, respectively.

Calculating the Sample M ean: We can use the aver age function in Microsoft
Excd to calculatethe samplemean for avariable of interest. Thegeneral form of the
average functionis:

=average(range of cells)

Therange of cdls should refer to those cells that contain the observations for which
we wish to calculate the samplemean. A range of cdlsis specified by typing the cell
reference of thetop-left corner cdl of therange, followed by acolon, followed by the
cdl reference of the bottom-right corner cdl of the range. Note that Microsoft Excel
will not discern between two different variables, so caution must be exercised to
correctly input the range of cdls.

Let us first calculate the sample mean for the observations for 1995. As
previously discussed, the observationsfor 1995 arecontainedincelsB2to B13. To
calculate the sample mean for 1995, we merely have to type the following formula
into a blank cell and press ENTER:

=average(b2:b13)

If the sample mean for 1995 is calculated correctly, Microsoft Excel should
return avalue of 5,891.99. Since our datais denominated in millions of Rubles, we
can state that average federal share of Value Added Tax collections for 1995 was
5,891.99 million Rubles. 1n the M easures worksheet, we have output this result to
cell B15.

Thereader should notethat wehaveadded a“=" signto theaveragefunction.
The"=" signisanindicator that the text following the“=" sign is afunction and not
merely plaintext. If we omit the“=" sign and press ENTER, we would observe that
what we had typed appearsin the cdl instead of the desired descriptive statistic. All
functions in Excel must be entered with a“=" sign.
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How does this value compare to the sample mean for the entire sample of
observations from 1995 to 19977 In order to calculate average Value Added Tax
collections (Federal Share) from 1995 to 1997, we can modify the average formula
to state:

=average(b2:d13)

which is entered to cell F15; Microsoft Excd should return of 8044.33. It does
appear that averageValueAdded Tax collections (Federal Share) increased over time.

Calculating the Sample Median and Midrange: We can use the median
functionin Microsoft Excd to calculate the median observation for arange of values.
Microsoft Excd will return the median value if there are a odd number of
observationsintherangeof cdlsfor which Microsoft Excedl isto calculatethe median
value. If there are an even number of observations in the range of cells, Microsoft
Excd will calculate the average of the two median observations instead of returning
the values for the two median observations.

The general form of the median function is smilar to the average function
and is expressed as:

=median(range of cells)
or, for example,
=median(b2:b13)

returnsthe median valuefor monthly VAT collectionsfor theyear 1995, which equals
5145.65.

Calculatingthesamplemidrangeprovesdlightly moredifficult, snceMicrosoft
Excel does not have a built-in function for the calculation of the sample midrange.
Notethat computation of the samplemidrangerequirestwo values, the minimum and
maximum observations for the variable of interest. Microsoft Exce does have two
functions, Min and Max, that we can use to obtain the minimum and maximum
observations for the Value Added Tax collections (Federal Share) series. Similar the
average and median, the general form of the Min and M ax functions are:

=min(range of cells)

=max(range of cells)

Recall that the samplemidrangeismerely the maximum observation minusthe
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5.4

minimum observation divided by two. Using 1995 as an example, we can calculate
the sample midrange by typing:

= ((max(b2:b13)-min(b2: b13))/2)

Calculating Measures of Variability

We now turn to the calculation of the measures of variability that were
previously discussed in Section 2.3. Please continueto usetheM easur es worksheet
inthe Examplesdatafile. The general form of the sample variance function and the
sample standard deviation function aresimilar to that for the functions for the sample
mean and sample median in that the general formis:

=var(range of cells)

and

=stdev(range of cells)

Continuing with our example of calculating the descriptive statisticsfor 1995 and the
entire sample of observations, we can calculate the sample variance and sample
standard deviation for 1995 by typing:

=var(b2:b13)

and

= gtdev(b2:b13)

If the formulas were correctly entered, cdls B18 and B19 should return the value of
5,227,486.78 for 1995 and 2,286.37, respectively. The sample variance and sample
standard deviation for all observations are calculated in cells F18 and F19.

Calculating Confidence Intervals

Inthissubsection, we examinehow to calculate confidenceintervalsfor point-
estimates using Microsoft Excel. Thereader should now openthe Examplesdatafile
that accompanied thisnoteand go to the Confidence worksheet inthe Examplesfile.

Introduction and Assumptions: The Confidence worksheet contains two
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hypothetical samples that we will use to develop confidence intervals for several
point-estimates of interest. Let us assumethat each of the hypothetical samples are
drawn from a population of 5,000 individuals and that the samples are drawn at
random. The sample sizeis set at 100 individuals and we observe gross income for
each individual in the sample. Dueto time and resource constraints, we are unable
to sample the entire population. For convenience, the data samples have been
highlighted in red.

Weareable, however, to draw inferences about the entirepopul ation fromthe
observed samples. We can calculate descriptive statistics and develop confidence
intervals for those statistics so that we know how confident we can be about their
accuracy. Inthisfashion, weareableto makeinferencesabout thepopulation at large
based upon a relatively small sample of observations.

Using our previous discussions on the measures of central tendency and
variability, we can calculate the sample mean, sample median, sample midrange,
samplevarianceand samplevarianceusing Microsoft Excel. Theresultsarepresented
in Table 5.1 and are also contained in cdls D3 through D8 of the Confidence
workshest.

Table5.1

Descriptive Statistics for Sample 1 in the Confidence Worksheet

Point-Estimator Point-Estimate
Sample Mean $50,928
Sample Median $52,996
Sample Midrange $48,523
Sample Variance 877,471,499
Sample Standard Deviation $29,622
n 100

The reader should note that instead of counting the number of observations
by hand, we have used the Count function in Microsoft Excel to confirm there are
actually 100 observationsin Sample 1. The general form of the Count functioniis:

=count(range of cells)

The Count function will return the number of non-blank, numerical cdlsonly. Thus
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it will not include cdlls that include text or invalid arguments in the numerical count.
In order to determine the number of observations in Sample 1, we typed:

=count(b3:b102)

Recall that we previoudly stipulated that the sample standard deviation was equal to
the squareroot of the samplevariance. Toillustratethisfact, we calculatethe square
root of the sample variancein cel D10 by using the SQRT function or:

=sqrt(D8)
Calculating the Confidence Interval for the Sample Mean: Recall from

Equation 2.6 that in order to calculate a confidence interval, we must first determine
the following four values:

? The Leve of Confidence;

? The Estimated Standard Error for the Point-Estimate;

? The Square Root of the Number of Observations in the Sample;
? The T-Statistic at n-1 and 1-? /2 degrees of freedom.

Let us assume that we wish to calculate a confidence interval for the sample
mean at a 95% level of confidence. Recall that ? , whichisthe level of significance,
isequal to (1- level of confidence), so ? is equal to 5%.

Theestimated standard error for the sample mean, asdefined in Equation 3.5,
is equal to the estimated sample standard deviation (Equation 3.4) divided by the
square root of the number of observations in the sample. As illustrated in the
Confidence workshest, the sample standard deviation isequal to $29,622 (Cdl D7)
and the square root of the number of observations in the sampleisequal to 10 (Cell
D10). Thus, the estimated sample standard error is equal to $2,962, which is the
result in Cdl D11 and isalso illustrated in Table 5.2.
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Tablebs.2

Calculating the Confidence Interval for the Sample M ean

Point-Estimator Point-Estimate
Sample Mean $50,928
Estimated Standard Error $2,962
Critical T-Statistic 1.984
Upper Bound for the Sample Mean $45,050
Lower Bound for the Sample Mean $56,805
n,n-1,7? 100, 99, 0.95

Recall from Equation 3.6 that the upper and lower bounds of the confidence
interval are equal to the point estimate plus/minus the critical t-statistic multiplied by
the estimated sample standard error. We now need to determine the value of the
critical t-statistic in order to calculate the upper and lower boundary points. As
illustrated in Equation 3.6, the t-statistic is distributed with n-1 degrees of freedom
and 1-(? /2) leve of confidence.

The TINV Function: We can use the Tinv function in Microsoft Excel to
calculate the critical t-statistic. The general form of the Tinv functioniis:

=TINV(level of significance, degrees of freedom)
Note that instead of entering 1-(? /2) as the operator of the t distribution, we only
haveto enter ? inthe Tinv function; by default, Microsoft Excdl calculatesthe correct
(two-tailed) t-statistic.

Given that we know that ? =0.5 (cell D13), and n-1 = 99 (cell D15), we can
calculate the critical T-statistic using either two of the following examples:

=TINV(d13,d15)

The result of this calculation is contained in cel D15 and the critical T-statistic is
equal to 1.984.

Calculating the upper and lower bounds of the confidence interval for the
samplemeanisillustratingincels D17 and D18 and theresults are contained in Table
2. For example, the upper bound of the confidenceinterval is equal to:

=(D3 + (D11*D15))
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or

$50,028 + (1.984*$2,962) = $56,805

We can now conclude that the sample mean of $50,928 is a reasonable
estimate for the population mean and that in repeated samples, the population mean
is likdy to lie within the range between $45,050 and $ 56,805 with a level of
confidenceof 95 percent. Sample2 intheConfidenceworksheet presentsonemore
example of how to calculate a confidence interval for the sample mean.

Conducting Hypothesis Tests in Microsoft Excel

In the previous subsection, we devel oped estimates for arange of statistically
possible values for the sample mean. However, as evidenced by Sample 1 in the
Confidenceworksheet, theconfidenceinterval (therangeof valuesthat areplausible)
can berdatively largeif one wishes to make inferences about a specific value. Inthe
previous example, if we stated the hypothesis that the population mean was equal to
$54,000 rather than the estimated value of $50,928, we would be unable to discern
whether or not thishypothesiswasindeed true using the confidenceinterval approach.

Wecan, however, specify ahypothesistest to determinewhether theestimated
value of a parameter of interest varies significantly from the hypothesized value.
Simply put, we can use a hypothesis test to conclude whether or not the population
sample mean is indeed equal to $54,000. For this section, please refer to the
Hypothesis worksheet of the Examples data file.

Recall that as with the estimation of a confidence interval, we must first
answer a series of question in order to test a hypothesis. First, what arethe null and
alternative hypotheses? Second, what isthe significanceleve of the hypothesistest?
Third, what test statistic will be used to test the null hypothesis? Fourth, what isthe
critical value of the test statistic? From these questions, we can compute the value
of thetest statistic and determine whether or not to regject the null hypothesis.

Null and Alternative Hypotheses: Given that we wish to test whether the
population mean isactually equal to $54,000, the null and alternative hypotheses are:

H, : Mean Income = $54,000 or p = $54,000
H, : Mean Income + $54,000 or p + $54,000

Significance L evel of aHypothesis Test: In our current example, wewish to
test whether mean population income is equal to $54,000. As previously discussed
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with respect to developing a confidence interval, we wish to have a predetermined
level in confidence in thetest. For this example, wewill test the null hypothesis at a
90% leve of confidence or 10% significance levdl.

The Test Statistic: As with the estimation of a confidence interval for the
sample mean, we can use the T-statistic to test the hypothesis of whether mean
populationincomeisequal to $54,000. If the calculated T-statistic islarger than the
critical T-statistic, then we rgect the null hypothesis and conclude that mean
population income is unlikely to be equal to $54,000. On the other hand, if the
calculated T-statistic does not exceed the critical T-statistic, then wefail to rgject the
null hypothesis, and thuswe can conclude that, based on the sampleinformation, that
mean population incomeis indeed equal to $54,000.

Critical Value of the Test Statistic: As discussed earlier in this section, the
critical value of thetest statistic is determined by the number of observations in the
sample (n) and the significance level of thetest (? ). Given that n=100 and (? )=.10,
the t-statistic can be calculated using the following function:

=tinv(.10, 99)

whichisequal to 1.66. If thecalculated test statistic exceeds 1.66, thenit fallswithin
thergection area of the test and we may regect the null hypothesis at a 10% leve of
significance. Thismeansthat, in repeated samples, that wearelikey toreect thenull
hypothesis 90% of thetime. Likewise, if thetest statistic does not exceed 1.66, then
we fail to rgect the null hypothesis and it is possible that mean population incomeis
equal to $54,000.

Calculatingthe Test Statistic for the SampleMean: AsillustratedincdlsD22-
D31 of theHypothesisworksheet and in Table 5.3, we havecalculated thecritical T-
statistic for the null hypothesisthat mean populationincomeisequal to $54,000 using
the expression in Equation (3.9):

d-0 50,928 - 54,000

T = | | = | = 1.037
S, 29,622.15
Jn /100

Notethat inthe Hypothesi s worksheet we have calculated the values for the sample
mean, the sample standard error, and the number of observations using functions
previously discussed. We then referred to these results in the calculation of the T-
statistic. Thefollowing expressions was used in Microsoft Excel for the calculation
of the critical T-statistic:

= abs((D3-D4)/D9)
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where the abs function produces the absolute value of term inside the inside the
parentheses.

Interpreting the Result: Asillustratedin Table5.3, the calculated valuefor the
T-statistic (1.037) does not exceed the critical T-statistic of 1.66. We thus “fail to
reject” the null hypothesis that mean population income is equal to $54,000 and
concludethat mean populationincomeislikdy to be equal to $54,000. Notethat we
can never conclude with certainty that the population’s mean income is equal to
$54,000 because we do not observe the entire population and only may draw
inferences about mean population income (or some other population parameter).

Table5.3

Hypothesis Testing

Point-Estimator Point-Estimate
Sample Mean $50,928
Hypothesized Population Mean $54,000
Estimated Standard Error 2,962
Critical T-Statistic 1.66
Calculated T-Statistic 1.04
n,n-1,? 100, 99, 10%

Using the Data Analysis Tool to Produce Summary
Statistics

Before proceeding to the next chapter, it will be useful to cover one moretool
in Microsoft Excd, the Data Analysis Tool (DAT). The Data Analysistool comes
with the Excd program, but isnot installed asastandard component. Thereforeif the
Data Analysistool appearsto bemissing from your version of Excd, you would have
to install this component before you can use the procedures int this subsection. It
should be pointed out that all the functions that the Data Analysistool performs can
be produced without installing the Data Analysis tool.

The Data Analysis Tool (DAT) automates many statistical functions in
Microsoft Excel and, for smplestatistical analysis, ismore efficient than entering the
statistical functions by hand. A note of caution, however, in that the DAT does not
automate every function, so the DAT should be used to support statistical analysis
and not replace the analyst’ srole in determining what are those appropriate statistics
of interest. Pleaserefer tothe DAT-STAT worksheet in the Examplesdata filefor
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the remainder of this subsection.
Figure5.2

Selection of Analysis Toolsin the Data Analysis Tool Window

Data Analysis EHE

Analysis Tools

Anova: Single Fackor -

Anova: Two-Fackor With Replication — Cancel |
Anova: Two-Fackor wWithout Replication

Correlation

ovariance Help |

‘Descripkive Skatistics

Exponential Smookhing

F-Test Two-Sample for Yariances

Fourier Analysis

Hiskogram j

Figure5.3

Calculating Summary Statistics Using the Data Analysis Tool
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Operating the Data Analysis Tool: The DAT is quite simple to operate. Go
to Tools and then click on Data Analysis. The Data Analysis tool will open as
illustrated in Figure 5.2.
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Notethat there are avariety of statistical functions that we may use with the
Data Analysistool. Click on Descriptive Statistics so that ishighlighted asin Figure
5.2 and click on OK. The Descriptive Statistics function window will open as
illustrated in Figure 5.3.

Input Range: Thefirst ‘box’ in the Descriptive Statistics function window is
labded Input Range. In this ‘box’ we will enter the range of data for which the
descriptive statistics will be produced. Notethat intheDAT-STAT spreadsheet the
datarangeisB2:B102 and thefirst data cell (B2) containsthe label for the data series
on income.

There are two methods of entering the range of data. First, we can enter the
range B2:B102 in the Input Range box. Second, note that at the right hand edge of
the box isasmall rectanglewith an upward pointing arrow. 1f we click on this small
box, another entry box will appear. We can now simply highlight the cells containing
our data and then click on the small box with the downward pointing arrow to return
to the Data Analysis tool.

Grouped By: The Grouped By consists of two inputs, whether the data is
oriented by columns or by rows. Thedatainthe DAT-STAT worksheset is column
oriented, that is, the observations for one series arein one column. Asillustrated in
Figure 5.3, we sdect Columns since our data is oriented by column. If the
observations for one series were contained in one row, then we would select Rows
instead of Columns.

Labelsin First Row: If thefirst row (or cdl) of the data seriesisalabd, then
make surethat thisbox ischecked e sethe DAT functionwill returnanerror message.
Since cdl B2 contains the labd ‘Income’, we have checked the cell in the example
illustrated in Figure 5.3.

Output: There are three Output Options. If Output Range is selected, the
analyst should enter the reference for the upper-left cell where the output should be
presented by Microsoft Excel. Besureto allow for at least two columns and several
rows for theoutput of theDAT. If theNew Worksheet functionischosen, the output
is directed to a new spreadsheet within the existing file and if the New Workbook is
chosen, the output isdirected to an entirdy new file. Asillustrated in Figure 5.3, we
have chosen to send the output to cell C3.

Summary Satistics: If this box is checked, Microsoft Excd will output the
sample mean, sample standard error, sample median, sample mode, sample standard
deviation, sample variance, the minimum and maximum observations of the sample,
the number of observations and several other statistics to the cell designated in the
Output box. If thisbox isleft unchecked, no summary statistics will be produced by
the DAT.

ConfidenceLevel for Mean: If thisbox ischecked, theconfidencelevd for the
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sample mean is produced by Microsoft Excd. The default confidence leve is 95%,
although this change be changed by entering a new confidence level inthe box by the
percentagesign. Notethat the confidencelevel must be added to/subtracted fromthe
sample mean to produce the confidence interval for the sample mean.

K-th Largest and K-th Smallest: These functions produce the maximum and
minimum observations if there are separate ranges of data in the Input Range of the
DAT. If only onerange of data is used, these two functions produce the maximum
and minimum observations in the sample. If more than one range of datais used in
the DAT, make sure to enter the number of separate data ranges in the boxes
adjoining the K-Largest and K-th Smallest check boxes.

We have presented one example of the operation of the DAT in the DAT-

STAT worksheet inthe Examples datafile. Recall that the results produced by the
DAT areidentical to the descriptive statistics computed using formulas.
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6. Regression Analysis in Microsoft Excel

6.1

As discussed earlier in Section 2 and Section 4, a number of estimation
techniques based on OLS regressions can be used to forecast economic and fiscal
variables. In particular, we discussed time-trend modeling, exponential smoothing
and bi-variate and multi-variate regression models. Sinceall of thesetechniquesrdy
on OLS regressions, they can all be estimated using the standard linear regression
functionin Excel (LINEST). However, Excd allowstheuser to estimatetimetrends
using the TREND function, while exponential smoothing can be performed with the
GROWTH function.

Forecasting Using a Time-Trend Model: The TREND Function

The TREND function fitsa straight line using the method of least squaresto
an array containing the dependent and independent variables. If the set of explanatory
variables is expanded beyond the range of observations containing the known
dependent and independent variables, the TREND function can produce forecasts of
thedependent variable. Inthetime-trend modd, expanding therange of observations
requires only creating the values of the time-trend variable as far into the future as
desired. For this subsection, please refer to the Trend worksheet in the Examples
datafile.

Array Producing Functions

Unlike the functions for the sample mean and sample variance, which return a
scalar result (a single value), the TREND function returns a series of results in
array format. An array formula performs multiple calculations and then returns
multiple results.

Array functions are created in the same way that basic, single-value functions are
created. However, before typing the function, the user should select the group of
cellsthat will containthefunction. Next, theuser should typethefunction and then
press CTRL+SHIFT+ENTER at the same time to apply the formula to the entire

array.

Asillustrated in the Trend worksheet, we have included time series data on
anumber of economic variables from January 1994 to February 1998. The TREND
function is used to estimate these variables from March 1998 through December
1998. For example, wecan usethisdatato create an “ out-of-sample” forecast for the
Consumer Pricelndex of the Russian Federation. Suchforecast isreferredtoas*out-
of-sampl€’ because we are estimating a value for the dependent variable outside the
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range for which we have data (in this case January 1994-February 1998).
The general form of the TREND function is:
=trend( y (in-sample), x (in-sample), x (out-of-sample), constant)

where y is the dependent variable that we are trying to estimate and x is the
explanatory variable. Oftenx isavariablemeasuring time, but could conceivably also
be another relevant economic or fiscal variable. In the example presented in the
Trend worksheet, the known (in-sample) values for x (the time trend) and y (CPI)
are contained in cells C4 through C53 (y) and B4 through B53 (x). The out-of-
sample observations for x (B54:B63) correspond to those observations of the time-
trend variable from March 1998 to December 1998.

The constant option inthe TREND functionisset to TRUE or omitted if the
intercept coefficient is to be calculated normally or set to FALSE isthe intercept is
to be forced equal to zero.

It isimportant to note that unlikethe LINEST function (aswe will seelater),
the TREND function does not return the estimated regression coefficients nor does
it providethe analyst with statistical information to test thevalidity of themodd. The
TREND function only returns values for the dependent variable based on the out-of-
sample independent variable(s).

Forecasting with the Trend Function: The TREND function returns an array
of values for the dependent variable equal to the number of out-of-sample
observations for the explanatory variable. In our example, the number of out-of-
sampleobservationsfor thetime-trend variablethat we seek to forecast isequal to 10,
so beforeentering the TREND function, it isfirst necessary to highlight a10 x 1 block
of cdls. Inthe Trend worksheet, we selected the cell rangefrom cell H4 to cell H13.
Next, we entered:

=trend(c4: c53,b4:b53,b54: b63,true)

and pressed CTRL+SHIFT+ENTER. Asillustrated in cells H4 to H13 of the Trend
worksheet, the forecasted values for the Consumer Price Index of the Russian
Federation continueto increase through December 1998. Thus, it appears, using the
time trend moddl and based on the sample of observations from January 1994 to
February 1998, that the Consumer Price Index will continue to increase steadily
throughout 1998.

Forecasts or predicted values are, of course, uncertain. Inall forecasts based
on regression models, there are two sources of uncertainty. First, uncertainty arises
because the mode cannot include all the factors that may influence the series of
interest. This uncertainty appears in the error terms that are included in each
regression equation. The second source of uncertainty is the estimators used for the
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6.2

model’s parameters. In the time-trend model, the slope and the intercept which
underlie the time-trend estimates are computed using the least squares method. As
illustrated through the use of the LINEST function in subsection 6.3, each estimate
is accompanied by an estimated standard error that measures the precision of the
estimate. The analyst should be aware of these sources of uncertainty and that the
forecasts should be updated when new data becomes available.

Exponential Smoothing: Forecasting Using the GROWTH
Function

The GROWTH function uses the exponential smoothing method to develop
estimates of the dependent variable of interest. As with the TREND function and
other regression techniques, the GROWTH function fits a line through an array
containing thedependent and independent variablesusing the method of least squares.
For the remained of this subsection, please refer to the Growth spreadsheset in the
Examples data file.

The general form of the GROWTH function issimilar to that of the TREND
function:

=growth(y (in-sample), x (in-sample), x (out-of-sample), constant)

wherey is the dependent variable, and x is the explanatory variable. The previous
discussion on in-sample and out-of -sampl e observations with respect to the TREND
function applies equally to the operation of the GROWTH function. The constant
option is set to TRUE or omitted if the intercept coefficient is to be calculated
normally or set to FALSE istheintercept is to be forced equal to zero.

The reader should note that when the GROWTH function is used Microsoft
Exce estimates the value of the weighting parameter ? to minimize the sum of the
squared prediction errors. If the reader wishes to chose a value for ?, it is
recommended that the reader use the Data Analysis Tool that is covered later onin
this section.

Forecasting with the GROWTH function: The GROWTH function returns
an array of values for the dependent variable equal to the number of out-of sample
observations for the explanatory variable. In the first example in the Growth
worksheet, our objectiveisto develop aforecast of the Consumer Pricelndex for the
Russian Federation using the GROWTH function. Thein-sample observationsfory
(Consumer Price Index) and x (time-trend) are in cdls C4 through C53 and B4
through B53, respectively. The out-of-sample observations for the time-trend
variable arein cdls B54 through B63.

Given that we have ten out-of-sample observations for the explanatory
variable, we must first highlight a 10 x 1 block of cdls (in this case, from cell H4 to
H13) and type the following formula:
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=growth(c4: c53,b4:b53,b54: b63,true)

and pressing CTRL+SHIFT+ENTER to apply the formula to the entire array. The
results are contained in cells H4 through H13 of the Growth worksheet.

Estimating a Linear Regression Using the LINEST Function

The basic idea behind a multi-variate modd is that the variation in avariable
may be caused by the variation in several other observable series. Suppose, for
example, that we would like to attempt to explain the level of Federal Enterprise
Profits Tax collections. A multi-variate regression model would attempt to explain
movements in the Federal Enterprise Profits Tax collections data series with a set of
explanatory variablessuchasproduction, therateof inflation, the unemployment rate,
among others. For this subsection, please refer to the Linest worksheet in the
Examples data file.

Multi-variate models are interpreted as causal models. This means that the
independent variables (i.e., the explanatory variables, such as production, inflation,
etc) should cause changes in the dependent variable (in this case, Federal Enterprise
Profits Tax collections). The direction of causality is assumed to be from the
explanatory variablesto the dependent variable, that is, auni-directional relationship.

Multi-variate or structural modds are quite useful in estimation for several
reasons. First, models based on economic variables, as opposed to statistical
processes, may provide a good fit for series that are quite erratic. Second, by
explaining the variation in an economic variable with a set of other economic
variables, the analyst is more able to discern how policy may impact variables of
interest. Finally, multi-variate models arethe most efficient, reliabletool availablefor
the estimation of economic relationships available in Excd.

Linear Regression Using the LINEST function: The LINEST function in
Microsoft Excd is used to obtain estimated regression coefficients for a linear
regressionmodel. TheLINEST function also reportsavariety of statistical teststhat
are useful in determining the fit of the modd.

The general form of the LINEST function is somewhat different from the
TREND and GROWTH functions:

=LINEST (y,X, constant, statistics)

wherey istherange of cells containing dependent variableand X isthe range of cels
(like a matrix) of independent variables. The constant option is set to TRUE or
omitted if theintercept coefficient isto be calculated normally or set to FALSE isthe
intercept isto beforced equal to zero. Thestatisticsoptionisset to TRUE if aseries
of additional regression statistics are desired or set to FALSE or omitted if the
regression statistics are not needed.
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Given that the LINEST function returns its results in array format, we must
create a block of cdls for the array output, similar to the TREND and GROWTH
function. Before entering in the LINEST function, highlight a group of cels by
clicking on thefirst cel of the output range and dragging the mouse until a sufficient
block of cdlsis highlighted.

If, for example, we choose to have the LINEST function produce all the
available statistics for aregression equation with k independent variables (excluding
theintercept), we must highlight anarray of k+1 columnswideand5rowslong. The
general output format of the LINEST function is somewhat counter-intuitive; it is
illustrated in Table 6.1.

As can be seen in Table 6.1, the top row of the output array, contains the
parameter estimates produced by the regression, from right to left (not from left to
right). The second row of the array presents the standard errors below each
parameter estimate. Other regression statistics (including the R? areincluded in the
output as indicated.

Table6.1

Output Format of the LINEST Function

Bn Bn-l Bz |31 &
se(B,)  [seB,)) se(B)  [seB) | se(e)
R? se(P)
F-statistic Degrees of
Freedom
Regression Residual
Sum of Sum of
Squares Squares

In the current example, the dependent variable is Real Federal Enterprise
Profits Tax Collections(EPT) and theexplanatory variablesarethepercentagechange
intheinflationrate (Inflation), theindex for Real GDP (GDP), and theindex for retail
sales of goods and services in constant prices (Sales). The mode can be expressed
as.

EPT, = B, + B, Inflation, + B, GDP, + B, Sales, + €,

After highlighting the output array (whichis highlighted in bright yellow for

Estimation and Forecasting Methods 39



clarity), the specific formfor the LINEST function used in cells 15 through L9 of the
Linest worksheet:

=LINEST (g4:952,d4:f52, true, true)
Recall, the LINEST function creates an output array for the estimated regression
coefficients, so it is necessary to press CNTL+SHIFT+ENTER to calculate the
LINEST function. The results are illustrated in Table 6.2 and in the Linest
workshest.
Table6.2

Estimation Results- LINEST example

Sales GDP Inflation I nter cept
Estimated 85.24 199.6234 4456.932 -25013.37
Cosfficients
Estimated 26.61 71.41242 5288.52 6084.944
Standard Error
R? 0.62 1144.06
F-Statistic/ 24.27 45
degrees of
freedom
Regression and 95,307,449.15 58900139
Residual Sum of
Squares

Asillustrated in by the R?, themodel explains approximately 62 percent of the
variation in Real Federal Enterprise Profits Tax collections. An F test is performed
to seeif the modd’s explanatory power is statistically significant. The critical value
for the F-statistic, which is calculated in cell J20, equals 4.24 at the 1 percent
significancelevd. SincetheF-statistic computed by themode (F=24.27) far exceeds
thiscritical value, thuswergect the null hypothesisthat all the estimated coefficients
arejointly equal to zero. Table6.2 and cells J22 through J27 of theL inest worksheet
contain the results of the hypothesis tests for the estimated regression coefficients.

A major advantage of the LINEST function is that it allows us to carefully
analyzetheinfluenceof eachindependent variableon the dependent variable. Wefind
that the estimated coefficients for real GDP and the Sales have a statistically
significant influence on the amount of EPT collections, even at the 1 percent leve of
significance. Furthermore, each of the estimated coefficientsfor thesevariablesisthe
“expected” sign. Theresultsindicatea positivereationship betweenthelevesof real
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GDP and Federal Enterprise Profits Tax collections as well as for retail sales and
EPT collections. On the other hand, while the estimated coefficient for the inflation
rateis positive, it is not statistically significant at any meaningful significance level.
Thus, this suggests that the monthly inflation rate does not appear to significantly
influence Real Federal Enterprise Profits Tax collections.

Regression Analysis Using the Data Analysis Tool

In the preceding analyses, we developed and estimated linear regression
models without the aid of the Data AnalysisTool. As mentioned earlier, this Tool
is an option of Excd that often needs to be installed separately. As with the
production of descriptivestatistics, the Data Analysis T ool can assist intheestimation
of linear regression models. In this section, we discuss the Regression Function
(REG) inthe Data Analysis tool (DAT).

Please refer to the DAT-REG worksheet in the Examples data file that
accompanied this note for the examples contained in this section.

Operating the Data Analysis Tool: The DAT-REG option is quite smple to
operate. Goto Toolsand then click on Data Analysis. Notethat thereareavariety
of statistical functionsthat wemay use. Click on Regression so that ishighlighted and
click on OK. The Regression Analysis function window will open as illustrated in
Figure6.1.

Inthisexample, wewill replicatethe estimation of alinear time-trend model using the
DAT-REGtool. Asillustratedin Figure6.2, we have selected theinput rangefor the
dependent (y) variable to correspond to the range for the Consumer Price Index,
including the data labd (B2:B52). We have also sdlected the input range for the
explanatory variable (x) to correspond to the rangefor the linear time-trend variable,
toincludethedatalabd (F2:F52). Asinearlier examples, thein-sampleobservations
range from January 1994 to February 1998.

Sincethefirst observation in each of the data seriesisthe data serieslabd, we
have checked the Labels option. If this box remained unchecked, the DAT would
return an error message. We have also chosen the Confidence Level option to
generate confidenceintervalsfor theregression coefficients. Wehavechosento have
Microsoft Excel generate a 95% confidence interval for each of the regression
coefficients.
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Figure6.2

The Regression Analysis Function Window
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The constant is zero option should only be checked if the regression isto be
run without a constant term. In essence, choosing this option forces the regression
line to pass through the origin.

There are three Output Options. If Output Range is selected, the analyst
should enter the reference for the upper-Ieft cdl of the output. Be sureto allow for
at least seven columns for the output of the regression function. If the New
Worksheet function is chosen, the output is directed to a new spreadsheet within the
existing fileand if the New Workbook is chosen, the output is directed to an entirely
new file. We have chosen to have the results sent to cell G3 of the DAT-REG
workshest.

The analyst can also choose to include the residuals and/or the standardized
residuals in the output of the regression function by choosing the Residual s and/or
Sandardized Residuals options. TheResidual Plots option should be selected if the
analyst wishesto have Excd generateachart for each independent variableversusthe
residuals.

Finally, if the Line Fit Plots option is selected, Microsoft Excd will generate
achart for the predicted values versus the observed values and if Normal Probability
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Plotsis sdected, a chart that plots normal probability will generated.

I nterpreting the Results of the Regression Analysis Tool: Theoutput fromthe
regression analysis tool is presented in three main categories: regression statistics,
ANOVA statistics, and estimated regression coefficients.

Regression Statistics: Table 6.3 illustrates the regression statistics report by
the DAT procedure.

Table 6.3

Output from the Data Analysis Tool -Regression Analysis

Regression Statistics

MultipleR 0.965603848
R Square 0.932390791
Adjusted R Square 0.930982266
Standard Error 11.07274238
Observations 50

Analysis of Variance Table: The regression analysis tool also reports the
degrees of freedom (df), the Sum of Squares (SS), and the Mean Square (M S) for the
regression and residuals. TheAnalysisof Variance (ANOVA) tablealso containsthe
Total Sum of Squares and the F-test that the estimated coefficients are jointly equal
to zero. The Sgnificance F statistic is the probability that we accept the null
hypothesis that the estimated coefficients are jointly equal to zero.

Estimated Coefficients: Asillustrated in Table 6.4, the Regression Analysis
Function reports the estimated coefficients, the estimated standard error, the T-
statistic, the p-value, and the upper and lower bounds of the 95% confidenceinterval
for each of the model’s coefficients. The reader should note that, as with the
Sgnificance F statistic reported in the ANOVA table, the P-value statistic is the
probability that we accept the null hypothesis that the estimated coefficient is equal
to zero. Giventherdatively high T-statistics, one can seewhy theP-valuesareclose
to zero.
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Table6.4

Estimated Coefficients - Data Analysis Tool -Regression Analysis

Coefficients Sandard t Sat P-value  Lower 95% Upper 95%
Error
Intercept 18.0600 3.1794 5.6802  7.68 E-O07 11.6673 24.4526
Time 2.7918 0.1085 25.7286  9.85 E-30 2.5736 3.0100

Concluding Remarks

In this note, we have examined how to estimate linear regression models in
Microsoft Exce and how to develop out-of-sample forecasts based upon the linear
regression analysis. We discussed the theoretical underpinnings of the linear
regression model and what werethe strengths and weaknesses of the Microsoft Excel
software package. This note provides the reader with the necessary materials to
conduct regression analysis, interpret theresults, and to construct statistically reliable
out-of-sample forecasts.

In conclusion, we note that the process of quantitative analysisis a give and
take process, where the theoretical knowledge and intuition of the analyst combines
to form a statistical model that is estimated using the available data. As we have
illustrated, the qualitative knowledge of the analysts is not surplanted by these
methodologies, merely enhanced.
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