PRIVATE
Ten Heuristics for the Effective Acquisition of Web Software

The Short List

1. Control the Requirements

2. Contractor’s Past Performance is Significant

3. Ensure Contractor’s Software Development Process is Sound

4. Utilize Software Metrics

5. Team with the Contractor

6. Encourage Software Reuse

7. Motivate the Contractor

8. Manage Risks

9. Enforce Configuration Management

10. Execute a Robust Testing Program

The Expanded Version – Logic for Heuristics

1. Control the Requirements. The exponential growth of software and hardware capabilities encourages requirement creep. Contract for software using a Statement of Objectives (SOO) or Statement of Work (SOW). Revise and finalize the requirements with the contractor. Utilize open system architecture to facilitate future software growth and updates.

2. Contractor’s Past Performance is Significant. Select a software development company with a strong record of success in comparable software of the application domain, size, complexity, and scope of your project. Paying a little more for the experience will reap dividends.

3. Ensure Contractor’s Software Development Process is Sound. Select a software contractor that has an established process for writing codes, conducting inspections, building in quality, testing, etc. Without a proven process the software can not be controlled, measured, and improved and is susceptible to a tremendous variance in performance and quality.
4. Utilize Software Metrics. Ensure the contractor has metrics in place to provide accurate cost, schedule and performance data on the project. Software problems do not occur overnight. Metrics will identify these problems early and provide the PM and contractor with time to evaluate various courses of action.

5. Team with the Contractor. Establish a “win-win” environment that
encourages honest reporting and a group effort to solve problems. Integrated Product Team (IPT) should be established at all levels throughout the contract. Remember that if the contractor fails you may be able to shift blame, but you are without your software and still get stuck with the bills.

6. Encourage Software Reuse. Software reuse potentially offers PMs significant cost and schedule saving with reduced risks. When considering reuse possibilities, the PM must consider the increased interface risk and the fact that not all requirements may be met. PMs should also pay for new code to be developed with the goal of supporting software reusability for future programs.

7. Motivate the Contractor. Provide the contractor with an appropriate contract type that considers risk and profit. In order to attract quality contractors, the profit must be equitable to the industry standard. Firm-Price-Incentive-Firm (FPIF) and Cost-Plus-Incentive-Fee (CPIF) provide the PM with additional abilities to reward the contractor for achieving cost, schedules, and performance objectives.

8. Manage Risks. Software development is inherently risky. PMs can take numerous actions to reduce these risks however. Thorough risk planning, selecting the right contractor, software reuse, accurate cost and schedule estimates, and robust testing all significantly reduce software development risks. Risk management must be conducted early and throughout the process.

9. Enforce Configuration Management. Configuration Management allows for a systematic build of a software program. It ensures that all personnel are working on the same version of the document and enables simultaneous development. Without a configuration management process, work will be lost and efforts to fix mistakes can lead to additional interface problems.

10. Execute a Robust Testing Program. The Test and Evaluation Master
Plan (TEMP) should crosswalk all requirements to specific test events that verify those requirements have been met. The contractor should be resourced to conduct internal inspections to catch software errors early before they are buried deep into the software program. Software testing is expensive, but much cheaper than fixing errors once the software has been fielded.
This page last updated 7 March 2000
